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ABSRACT: Logistic regression models are widely used in the field of 

medical and behavioral sciences. These models are used to describe the 

effect of explanatory variables on a binary response variable. The 

maximum likelihood estimator (MLE) is commonly used to estimate the 

parameters of logistic regression models due to its efficiency under a 

parametric model. However, evidence has shown that the MLE is highly 

sensitive to outlying observations which might affect the parameter 

estimates. Robust methods are put forward to rectify this problem. This 

paper investigated the robustness of GM-Mallows and GM-Schweppes 

as an alternative to the commonly used ordinary logistic regression 

model in the presence of outliers. The study used a Monte Carlos 

Simulation, by generating a logistic regression model with Five 

independent normally distributed covariates. 5% of outliers was 

contaminated to the data on sample sizes 50, 200 and 400 respectively. 

The results showed that the GM-Mallows estimator perform best across 

all metrics having the lowest AIC, BIC, MSE and MAE except for n=50. 

This suggests that the robust methods, especially GM-Mallows, provide 

more reliable estimates in the presence of outliers. The finding suggests 

that if there is presence of outliers’ GM-Mallows appears to be the top 

choice, where the GM-Schweppes offers a middle ground, providing 

some robustness with perhaps less extreme adjustments. The ordinary 

logistic regression might be preferred if simplicity and interpretability 

are prioritized, and there's confidence that outliers are not a significant 

issue in the data.  

KEYWORDS: Robust, logistic regression, GM-Mallows, GM-

Schweppes, Outliers. 
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INTRODUCTION 

Logistic regression is a proper analysis method used to model data and explain the relationship 

between the binary response variable and explanatory variables. Logistic regression is the most 

important tool for data analysis in various fields. The classical approach for estimating 

parameters is the maximum likelihood estimation, a disadvantage of this method is high 

sensitivity to outlying observations. The robust estimators for logistic regression are alternative 

techniques due to their robustness. Many robust estimators as an alternative to MLE have been 

proposed. [1] developed a diagnostic measurement of outlying observations and they showed 

that in the logistic regression, the MLE was very sensitively to outlying observations (see also 

[2]).  

An outlier is an observation deviated from the other values in data and produces the large 

residuals. In logistic regression model, an outlier can be occurred in the response variables as 

well as in the predictor variables or in both. In the binary regression model, all the response 

variables 𝑦𝑖 are binary, takes the numerical values 0 or 1, therefore, an outlier in the response 

variable can only occur as a transposition 0→1 or 1→0 discussed by [3]. An error in response 

variables is also well-known as a misclassification error or residual outlier. Extreme 

observation in explanatory variables is known as a leverage point or leverage outlier. [4] stated 

that the estimated parameters in logistic regression may be severely affected by outliers; hence, 

several robust alternatives which are much less affected by outliers are proposed in the 

literature (for example, [4]; [5]; [6]; [7]; [8]; [9]). A robust regression is an iterative procedure 

that is designed to overcome the problem of outliers and influential observations in the data 

and minimize their impact over the regression coefficients [10].  

The main objective of robust estimation is to obtain reliable estimates/inferences for unknown 

parameters in the presence of outliers. [11] applied a logistic model to evaluate the risk factors 

for hepatitis B viral disease in Gusau local government of Zamfara State, Nigeria and 

recommended it as the best model for the analysis of HBV despite the fact that, the logit is not 

resistant to outliers which may lead to inefficient results. Therefore, this study intends to 

improve on their work by investigating the performances of robust logistic models namely GM 

Mallows and GM Schweppes robust estimators which are resistant to outliers and high 

leverages as an alternative to the mostly used logistic model in modelling binary response 

variable. 

 

METHODOLOGY 

Methods of Model estimation 

A. GM Estimator 

The GM estimators are known to be consistent, asymptotically normal and most efficient in 

the class of all estimators that do not use any extra information aside from that contained in the 

moment conditions. 

It can be expressed as a solution of normal equations given by 
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∑𝑑𝑖𝜓(
(𝑦𝑖 − 𝑥𝑖

𝑡𝛽̂)

𝜎̂𝑑𝑖
) 𝑥𝑖 = 0

𝑛

𝑖=1

                                                                                   (1) 

Where 𝜓 = ρ’ is an influential function and di = 1, 2, ..., n is the initial weight function. 

The initial weight of the GM estimator is then defined as follows 

𝑑𝑖 = [1, (
𝜒2(0.95, p)

𝑅𝑀𝐷2
)] , 𝑖 = 1,2, … , 𝑛                                                                     (2) 

 

The FIMGT is defined as:  

 

FIMGT𝑖 =

{
 
 

 
 

𝜀î.R

𝜎̂R−i√1 − wii.R
∗
for i ∈ R

𝜀î.R

𝜎̂R√1 + wii.R
∗
for i ∉ R

                                                                                       (3) 

Where (β̂), the parameter estimates, residuals (𝜀î.R), hat values (wii.R
∗ ), standard deviation (𝜎̂R) 

and standard deviation with the ith case deleted (𝜎̂R−i) are computed using the OLS to the 

remaining data, i.e R set. 

Algorithm: GM Estimator 

1. An arbitrary subset, 𝐻𝑜𝑙𝑑 comprises of h different observations are chosen where h is 

smallest integer greater than or equal to
𝑛+𝑝+1

2
, p is the number of predictor variables. 

2. Compute the average vector 𝑇̅𝐻𝑜𝑙𝑑  and covariance matrix 𝐶𝐻𝑜𝑙𝑑 of all observations that 

belong to 𝐻𝑜𝑙𝑑. 

3. Compute the Mahalanobis Distance Squares, denoted as:𝑑𝑜𝑙𝑑
2 (𝑖) = (𝑡𝑖 −

𝑇̅𝐻𝑜𝑙𝑑)′𝐶𝐻𝑜𝑙𝑑
−1 (𝑡𝑖 − 𝑇̅𝐻𝑜𝑙𝑑) 𝑓𝑜𝑟𝑖 = 1,2, … , 𝑛. 

4. Arrange 𝑑𝑜𝑙𝑑
2 (𝑖) for I = 1,2,…,n in ascending order 𝑑𝑜𝑙𝑑

2 (𝜋(1)) ≤ 𝑑𝑜𝑙𝑑
2 (𝜋(2)) ≤ ⋯ ≤

𝑑𝑜𝑙𝑑
2 (𝜋(𝑛)) where 𝜋 is permutation equal to { 1,2,…,n}. 

5. Create 𝐻𝑛𝑒𝑤 = {𝑡𝜋(1), 𝑡𝜋(2), … , 𝑡𝜋(ℎ)} such that its’ elements comprises of the first 

smallest h observations acquired from step 4. Then list the new Index Set. 

6. Compare 𝐼𝑛𝑒𝑤 = 𝐼𝑜𝑙𝑑 . If  𝐼𝑛𝑒𝑤 = 𝐼𝑜𝑙𝑑 , stop the process. Afterwards, equate 𝑇̅𝐻𝑜𝑙𝑑: = 

𝑇̅𝐻𝑛𝑒𝑤 , 𝐶𝐻𝑜𝑙𝑑: = 𝐶𝐻𝑛𝑒𝑤 , if 𝐼𝑛𝑒𝑤 ≠ 𝐼𝑜𝑙𝑑 then recomputed 𝑇̅𝐻𝑛𝑒𝑤 ,and  𝐶𝐻𝑛𝑒𝑤 , let 𝐻𝑜𝑙𝑑: =

 𝐻𝑛𝑒𝑤,𝑇̅𝐻𝑜𝑙𝑑: = 𝑇̅𝐻𝑛𝑒𝑤  and 𝐶𝐻𝑜𝑙𝑑: = 𝐶𝐻𝑛𝑒𝑤 . Repeat Steps 3-6, until𝐼𝑛𝑒𝑤 = 𝐼𝑜𝑙𝑑 where at 

this point, 𝑇̅𝐻𝑛𝑒𝑤  is the robust estimator of location and 𝐶𝐻𝑛𝑒𝑤  is the robust estimator of 

scatter. 
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B.  Mallows GM-estimate 

The first GM-estimate was proposed by Mallows (1975). For Mallows GM-estimate, Hat 

values range from 0 to 1, so weight function down weights the high leverage points. A weight 

of √1 − ℎ𝑖 ensures that observations with high leverage receive less weight than observations 

with small leverage (i.e if (ℎ𝑖 > ℎ𝑗,𝑢𝑖 < 𝑢𝑗. Although this strategy seems sensible at first, it is 

problematic because even ‘‘good’’ leverage points that fall in line with the pattern in the bulk 

of the data are down-weighted, resulting in a loss of efficiency. 

C.  Schweppes GM-estimate 

Another GM-estimate is called Schweppe GM-estimate. This method adjusted the leverage 

weights according to the size of the residual 𝑒𝑖 by using 𝑣𝑖=𝑤𝑖 , where 𝑤𝑖 is the weight function 

which is the same as Mallows GM-estimate and equal to √1 − ℎ𝑖  (see Handschin et al. 1975). 

However, since the weight function of this estimate only depends on 𝑥 values without 

considering how the corresponding 𝑦 values fit with the pattern of the bulk of the data, 

efficiency is still hindered (Krasker and Welsch 1982). Moreover, Carroll and Welsh (1988) 

suggested that the Schweppe estimate is not consistent when the errors are asymmetric. The 

breakdown points for the above two GM-estimates, although better than for regular M-

estimate, are at most 1 (1 + 𝑝)⁄ , where p is the number of predictor variables (Maronna, Bustos 

and Yohai 1979). Thus, as dimensionality increases, their BP tends to 0.  

D.  Logistic regression model. 

Logistic regression is a popular modeling technique used to predict binary outcomes. The 

model is a linear model that captures the relationship between the input variables and the output 

variable (binary outcomes). 

The multiple binary logistics regression model is given as follows: 

π(X) =
exp (𝛽0 + 𝛽1𝑋1 +⋯+ 𝛽𝑘𝑋𝑘)

1 + exp (𝛽0 + 𝛽1𝑋1 +⋯+ 𝛽𝑘𝑋𝑘)
                                                                 (4) 

=
exp (𝑋𝛽)

1 + exp (𝑋𝛽)
 

=
1

1 + exp (−𝑋𝛽)
 

Where here π denotes a probability and not the irrational number 3.14… 

Π is the probability that an observation is in a specified category of the binary Y variable, 

generally called the “success probability”. We notice that the model describes the probability 

of an event happening as a function of X variables. For instance, it may provide estimates of 

the probability that an older person has heart disease. With the logistic model, estimate of π 

from equations like the one above will always be between 0 and1 the reasons are: The 

numerator 𝑒𝑥𝑝(𝛽0+𝛽1+𝛽1𝑥1+⋯+𝛽𝑘𝑥𝑘) must be positive, because it is power of a positive value 

(e). The denominator of the model is (1+numerator), so the answer will always be less than 1. 

With one X variable, the theoretical model for π has an elongated “S” shape (or sigmoidal 
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shape) with asymptotes at 0 and 1, although in sample estimate we may not see this “S” shape 

if the range of X variable is limited. 

For a sample of size n, the likelihood for a binary logistic regression is given by: 

𝐿(𝛽; 𝑦, 𝑋) = ∏ 𝜋𝑖𝑦𝑖 (1 − 𝜋𝑖)1−𝑦𝑖𝑛
𝑖=1   = ∏  (

exp (𝑋𝛽)

1+exp (𝑋𝛽)
)
𝑦𝑖

𝑛
𝑖=1    (

1

1+exp (𝑋𝛽)
)
1−𝑦𝑖

 (5)     

Simulation Study: Generating Data Set 

A Monte Carlos Simulation study was carried out to compare the robustness of the estimators 

discussed above. These estimators are: Logistic model, GM-Mallows and GM-Schweppes 

robust logistic models 

Following the simulation study similar as the one carried out by [12] and [13], a logistic 

regression model is generated with Five independent normally distributed covariates. The error 

terms 𝜀𝑖 are drawn from a logistic distribution defined as: 

𝑌 = 𝐼(𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽3𝑥3 + 𝛽4𝑥4 ++𝛽5𝑥5𝜀 ≥ 0.              

A 5% outlier contaminated to the simulated data, having Five explanatory variables 

independently and normally distributed with zero mean and unit variance is considered. The 

true parameter values are β = (0, 2, 2,2,2,) with sample sizes n = 50, 200 and 400 representing 

Small, Medium and Large. The responses y was chosen randomly and changed from either 0 

to 1 or 1 to 0. 

Measure of performance and selection criteria for the best methods 

1.To select the best model fitting, Akaike Information Criterion (AIC), Bayesian Information 

and Mean Square error (MSE) Criterion (BIC) can be used. The smaller the value of AIC or 

BIC, the better the model in fitting. AIC and BIC are defined as follows; 

 

𝐴𝐼𝐶 =  −2𝑙𝑜𝑔𝑝 (𝐿) + 2𝑝          (6) 

𝐵𝐼𝐶 =  −2𝑙𝑜𝑔𝑝 (𝐿) + 𝑝𝑙𝑜𝑔(𝑛)        (7) 

Where;  

L is the likelihood under the fitted model,  

P is the number of parameters used/ in the model,  

n is the number of observations / sample size. 

 

2. 𝑀𝑆𝐸 = [
1

100
∑ |𝛽̂𝑖 − 𝛽|

21000
𝑖=1 ]        (8) 
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3. 𝑀𝐴𝐸 =
1

𝑛
 =∑   |(𝐴𝑡 − 𝐹𝑡)                                                                                                (9)|

𝑛
𝑡=1  

 

RESULTS 

Table 1: Simulated results of Logistic, GM-Mallows and GM-Schweppes with 5%  outlier 

Contamination at sample size 50. 

Sample Size  n=50   

Methods AIC BIC MSE MAE 

Logistic 

Mallows 

Schweppes 

651.123 

641.8432 

611.3513 

652.418 

655.663 

615.4513 

0.8647 

0.7021 

0.2137 

0.9334 

0.4314 

0.4123 

Source: Authors’ computation aided by R package v 4.1.3 

Table 2: Simulated result of Logistic, GM-Mallows and GM-Schweppes with 5% outlier 

Contamination at sample size 200. 

Sample Size  n=200   

Methods AIC BIC MSE MAE 

Logistic 

Mallows 

Schweppes 

631.3213 

610.861 

611.924 

635.4213 

613.853 

625.613 

0.3137 

0.3213 

0.3137 

0.3123 

0.2254 

0.3123 

Source: Authors’ computation aided by R package v 4.1.3 

Table 3: Simulated results of Logistic, GM-Mallows and GM-Schweppes with 5% outlier 

Contamination at sample size 400. 

Sample Size  n=400   

Methods AIC BIC MSE MAE 

Logistic 

Mallows 

Schweppes 

691.12 

609.321 

610.341 

692.31 

613.853 

617.312 

0.1047 

0.3213 

0.4137 

0.2350 

0.2254 

0.2123 

Source: Authors’ computation aided by R package v 4.1.3 
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Table 4: Comparing the Performances of the three models simulated Results With 5% at 

sample sizes 50, 200 and 400 respectively. 

Sample 

size (n) 

Models AIC BIC MAE MSE 

n=50 logistic 651.123 652.418 0.9334 0.8647 

 GM-Mallows 641.8432 655.663 0.4314 0.7021 

 GM-Schweppes 611.3513 615.4513 0.4123 0.2137 

n=200  logistic 631.3213 635.4213 0.3123 0.3137 

 GM-mallows 610.861 613.853 0.2254 0.3213 

 GM-Schweppes 611.924 625.613 0.3123 0.3137 

n=400  logistic  691.12 692.31 0.235 0.1047 

 GM-Mallows 609.321 613.853 0.2254 0.3213 

 GM-Schweppes 610.341 617.312 0.2123 0.4137 

 

CONCLUSION AND RECOMMENDATION 

Table 1 reports AIC, BIC, MSE and mean absolute errors (MAE) of the three models for the 

contaminated data on sample size 50. The result showed that GM-Schweppes gives a better 

result compared to the ordinary logistic and GM-Mallows having the lowest AIC (611.3513), 

BIC (615.4513) and MSE (0.2137) respectively. Looking at table 2, we can observe that the 

GM-Mallows outperformed the ordinary logistic and robust GM-Schweppes models having 

the lowest AIC (610.861), BIC (613.853) and MSE (0.2254) accordingly. We can also see that 

from the result of table 2, as the sample size increases to 200 the values of AIC, BIC, MSE and 

MAE of ordinary logistic and GM-Mallows have reduced drastically compared to when n is 

50. In the same vain, looking at Table 3, the GM-Mallows model also found to outperform the 

ordinary logistic and GM-Schweppes having the lowest AIC (609.321) and BIC (613.853) 

values. We can also notice that the values of AIC, BIC, MSE and MAE of the GM-Schweppes 

reduces drastically as the sample sizes goes up to 400. Table 4 compared the performances of 

the three models based on sample sizes 50, 200 and 400 respectively. The result showed that 

the GM-Mallows gives a better result except when n=50, followed by GM-Schweppes. So, the 

results of the study showed that in all categories the ordinary logistic model performed less 

compared to the robust methods. Meaning that the ordinary logistic is highly sensitive to 

outliers. Therefore, this study recommended that Analyst should only use ordinary logistic 

regression on estimation if they are certain of no outliers in the data otherwise it would lead to 

unbiased results.  
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