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ABSTRACT: This study compared bootstrap and maximum 

likelihood estimation methods for assessing the reliability index 

using scores from the 2022 National Business and Technical 

Examination Board (NABTEB) Economics examination. 

Cronbach's Alpha reliability statistic was applied across various 

sample sizes (50, 100, 200, 500, 1000, and greater than 1000) to 

assess measurement reliability. Five confidence interval (CI) 

estimation methods were utilized: Wald, Profile Likelihood, 

Bootstrap Percentile, Bias-Corrected and Accelerated (BCa), and 

Studentized. Findings revealed that SE decreases as sample size 

increases, demonstrating greater precision with larger samples. 

The Wald confidence interval, though effective for large samples, 

proved unreliable for small ones due to its assumption of 

normality. The Profile Likelihood confidence interval, slightly 

wider than the Wald confidence interval, better accounted for non-

normality. The Bootstrap Percentile confidence interval, a 

nonparametric approach, provided robust estimates when 

population distribution assumptions were violated. The BCa 

method improved accuracy by adjusting for bias and skewness, 

while the Studentized confidence interval offered conservative 

estimates, accounting for sample variability. Reliability estimates 

also increased with sample size. It was therefore recommended 

that for large samples, use Wald CI; for small samples or skewed 

data, opt for Profile Likelihood or Bootstrap CIs. 

KEYWORDS: Sample size, Standard error, Confidence intervals, 

Reliability, Bootstrap. 
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INTRODUCTION 

Reliability estimation is crucial in psychometrics and measurement, ensuring that assessment 

tools consistently produce stable and accurate scores. Among the numerous statistical 

techniques for estimating reliability, Maximum Likelihood Estimation (MLE) and the 

Bootstrap method stand out due to their robust mathematical frameworks and applicability in 

different contexts. MLE is a parametric method that assumes a known probability distribution 

and seeks to find parameter estimates that maximize the likelihood function (Kim & Lee, 

2023). The Bootstrap method, a non-parametric alternative, relies on resampling techniques to 

estimate the sampling distribution of a statistic, offering advantages in cases where parametric 

assumptions may not hold (Efron & Hastie, 2021). 

Recent advancements in computational statistics have heightened interest in comparing these 

two methods, particularly in educational and psychological testing. MLE has been widely 

applied in Classical Test Theory (CTT) and Item Response Theory (IRT) frameworks, where 

large-sample, normally distributed data are assumed (Baker & Kim, 2022). In contrast, the 

Bootstrap method provides a flexible approach, particularly useful in small samples and 

skewed data distributions (Xie & Wang, 2022). The selection of an appropriate estimation 

method is crucial, as it directly influences the accuracy and precision of reliability indices. 

This study aimed to compare the Bootstrap and Maximum Likelihood Estimation methods in 

estimating reliability indices, analyzing their performance under different sample sizes and data 

distributions. The findings would contribute to an improved understanding of the most suitable 

estimation technique for various psychometric contexts. 

Reliability and Its Estimation Methods 

Reliability refers to the consistency and stability of measurement instruments across different 

conditions and testing instances (Tavakol & Dennick, 2019). Traditional reliability estimation 

methods include Cronbach’s alpha, split-half reliability, and test-retest reliability, all of which 

are influenced by sample size, data distribution, and underlying model assumptions (Fan & 

Thompson, 2020). 

Maximum Likelihood Estimation (MLE) Model 

MLE is a statistical method used to estimate parameters by maximizing the likelihood function 

of a given observed data. For reliability estimation, the MLE approach assumes a known 

probability distribution, commonly a normal or logistic distribution. In a psychometric setting, 

given a set of observed test scores 𝑋 = (𝑋1, 𝑋2, . . . , 𝑋𝑛) , the likelihood function for a normal 

distribution with mean 𝜇 and variance 𝜎2  is: 

𝐿 (𝜇,
𝜎2

𝑋
) = ∏

1

√2𝜋𝜎2
𝑒𝑥𝑝 (−

(𝑋𝑖−𝜇)2

2𝜎2
𝑛
𝑖=1 )  

The MLE estimates for 𝜇 and  𝜎2   are obtained by solving: 

𝜇̂ =
1

𝑛
∑ 𝑋𝑖, 𝜎̂2 =

1

𝑛

𝑛
𝑖=1 ∑ (𝑋𝑖 − 𝜇̂)2𝑛

𝑖=1   

Reliability estimation using MLE is often applied in Item Response Theory (IRT), where item 

parameters (difficulty, discrimination, guessing, and carelessness) are estimated via log-
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likelihood functions (van der Linden, 2021). However, MLE has limitations, particularly in 

small samples, where variance estimates can be biased (Meng, 2023). 

Bootstrap Estimation Model 

The Bootstrap method, introduced by Efron in 1979, is a resampling-based technique that 

estimates the sampling distribution of a statistic by repeatedly drawing samples (with 

replacement) from the original dataset. The estimated reliability index using Bootstrap is 

derived by computing the statistic of interest across multiple resampled datasets. 

The Bootstrap procedure follows these steps: 

1. Generate B resamples from the observed data set 𝑋 = (𝑋1, 𝑋2, . . . , 𝑋𝑛)  by randomly 

selecting 𝑛 observations with replacement. 

2. Compute the reliability index for each resample. 

3. Calculate the Bootstrap estimate of reliability as the average across all 𝐵 resamples: 

𝑅̂𝐵𝑜𝑜𝑡 =
1

𝐵
∑ 𝑅𝑏 

𝑛

𝑏=1

 

where 𝑅(𝑏) represents the reliability estimate from the 𝑏𝑡ℎ resample. 

The Bootstrap method is particularly effective in small-sample conditions and when data are 

non-normally distributed (Mooney & Duval, 2022). However, its computational intensity and 

potential for overestimating reliability in highly skewed data warrant careful application (Xie 

& Wang, 2022). 

Several studies have compared MLE and Bootstrap methods in psychometric and educational 

measurement contexts. Xie and Wang (2022) found that while MLE is more efficient in large 

samples with normally distributed data, the Bootstrap method produces more stable estimates 

in small-sample settings. Similarly, Fan and Thompson (2020) demonstrated that the Bootstrap 

method yields better confidence intervals for reliability estimates, making it a preferable choice 

in exploratory research. 

Maximum Likelihood Estimation (MLE) - Wald Confidence Interval 

Using the asymptotic normality of MLE, the Wald confidence interval is given by: 

𝐶𝐼 = 𝑅̂ ± 𝑧𝛼/2 × 𝑆𝐸(𝑅̂)𝐶𝐼    

where: 

𝑅̂ = estimated reliability coefficient  

SE(𝑅̂ )= standard error of 𝑅̂ estimated as: 

SE(𝑅̂ ) = √
1

𝑛
∑ (𝑅̂ − 𝑅)2𝑛

𝑖=1   
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where: 

𝑛 = sample size 

𝑅̂ = estimated reliability coefficient for sample ii 

𝑅 = mean of all estimated reliability coefficients 

𝑍𝛼  

2
= critical value from the standard normal distribution (e.g., 1.96 for a 95% confidence 

interval) 

Bootstrap Confidence Interval 

The Bootstrap Standard Error (SE) is computed from bootstrap resampling: 

SE(𝑅̂ ) = √
1

𝐵
∑ (𝑅̂∗ − 𝑅∗)2𝑛𝐵

𝑏=1   

where: 

𝐵 = number of bootstraps resamples 

𝑅̂∗ = estimated reliability coefficient from bootstrap sample bb 

𝑅∗ = mean of bootstrap reliability estimates 

Bootstrap Confidence Interval Formulas 

Percentile Bootstrap CI: 

𝐶𝐼 = (𝑅̂∗(0.025𝐵), 𝑅̂∗(0.975𝐵)   

This is obtained by sorting the bootstrap estimates 𝑅̂𝑏
∗
and selecting the 2.5th percentile and 

97.5th percentile as the CI bounds. 

Studentized Bootstrap CI (Uses SE) 

𝐶𝐼 = 𝑅̂  ± 𝑡(0.975,𝐵) × 𝑆𝐸∗  

where 𝑡(0.975,𝐵) is the bootstrap t-statistic from the bootstrap distribution. 

Maximum Likelihood Estimation (MLE) and Confidence Intervals for Reliability 

Coefficients  

MLE estimates reliability coefficients by maximizing the likelihood function, but it also allows 

us to compute confidence intervals for these estimates using asymptotic theory or the profile 

likelihood method. 
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MLE Confidence Interval Estimation Approaches 

Wald Confidence Interval (Standard Error Approach) 

The Wald method requires large sample sizes for valid inference, and assumes the sampling 

distribution is normal, which may not hold in small or skewed samples.  After estimating the 

reliability coefficient 𝑅̂, the standard error (SE) is computed using the Fisher information 

matrix. 

𝑆𝐸(𝑅̂ )= √𝑉𝑎𝑟(𝑅̂ )  

The Wald confidence interval is then given by: 

𝐶𝐼 = 𝑅̂  ± 𝑍𝛼

2
× 𝑆𝐸(𝑅̂ )   

where 𝑍𝛼

2
 is the critical value from the standard normal distribution. 

Profile Likelihood Confidence Interval 

Instead of using a normal approximation, this method constructs confidence intervals by 

finding the range of values for which the likelihood function remains within a given threshold. 

This method is more accurate for small samples compared to Wald intervals. 

Mathematically, it finds values 𝑅𝑙𝑜𝑤 and 𝑅ℎ𝑖𝑔ℎ such that: 

2𝑙𝑜𝑔𝐿(𝑅̂ ) − 2𝐿𝑜𝑔𝐿(𝑅) ≤ 𝜒2
1,𝛼

 

where 𝜒2
1,𝛼

 is the chi-square critical value for a given confidence level. 

Bootstrap Confidence Interval Estimation 

Bootstrap resampling allows us to estimate confidence intervals without relying on normality 

assumptions. 

Bootstrap Confidence Interval Approaches 

Percentile Bootstrap CI 

The percentile bootstrap confidence interval is simple to implement and does not assume 

normality. However, it can be biased if the original sample size is small.  The steps are: 

Resample the data 𝐵 times. 

Compute the reliability coefficient 𝑅∗
𝑏 for each bootstrap sample 𝑏. 

Sort the bootstrap estimates and take the 2.5th percentile and 97.5th percentile as the lower and 

upper bounds, respectively. 𝐶𝐼 = (𝑅∗(0.025𝐵), 𝑅∗(0.975𝐵)   

Bias-Corrected and Accelerated (BCa) Bootstrap CI 

It is more accurate than percentile CI, and recommended for skewed or non-normal data. 

However, it requires more computation than percentile CI. The Bias- Corrected and 
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Accelerated bootstrap adjusts for bias and skewness in the bootstrap distribution. The adjusted 

confidence limits are given by: 

𝐶𝐼 = (𝑅∗(𝛷(𝑧0 + 𝑧∗
0.025), (𝑅∗(𝛷(𝑧0 + 𝑧∗

0.975))  

where 𝑧0 corrects for bias and 𝑧∗corrects for acceleration (curvature of the bootstrap 

distribution). 

Studentized Bootstrap CI 

The studentized bootstrap confidence interval computes bootstrap standard errors for each 

sample and adjusts the confidence interval accordingly: 

𝐶𝐼 = (𝑅̂  − 𝑡(0.975,𝐵) ⋅ 𝑆𝐸∗, 𝑅̂  + 𝑡(0.025,𝐵) ⋅ 𝑆𝐸∗)  

It is more robust in small samples, but requires estimating standard error (SE) for each 

bootstrap sample, increasing computational cost. 

 

RESULTS AND DISCUSSION OF FINDINGS 

The study analyzed scores from the 2022 National Business and Technical Examination Board 

(NABTEB) Economics examination. To assess reliability, Cronbach's Alpha statistic was 

employed across various sample sizes, including 50, 100, 200, 500, 1000, and a final category 

exceeding 1000. Five different methods were utilized in the analysis: the Wald and Profile 

Likelihood confidence intervals, derived from Maximum Likelihood Estimates, along with the 

bootstrap confidence interval method, which includes the Percentile, Bias-Corrected and 

Accelerated (BCa), and Studentized approaches. The results are presented in Table 1. 

Table 1: Confidence Interval for Reliability Estimates 

N 50 100 200 500 1000 >1000 

Mean  36.88 36.00 33.42 33.18 34.02 33.51 

Std Dev 2.80 2.47 6.26 5.99 5.56 6.34 

SE 0.40 0.25 0.44 0.27 0.18 0.19 

Reliability estimate  0.64 0.75 0.81 0.82 0.84 0.86 

Wald CI (95%) (36.10, 

37.66) 

(35.51, 

36.49) 

(32.56, 

34.28) 

(32.65, 

33.71) 

(33.67, 

34.37) 

(33.14, 

33.88) 

Profile Likelihood 

CI (Approx.)  

(36.05, 

37.60) 

(35.45, 

36.55) 

(32.50, 

34.30) 

(32.60, 

33.75) 

(33.62, 

34.40) 

(33.10, 

33.90) 

Bootstrap Percentile 

CI 

(36.02, 

37.50) 

(35.40, 

36.50) 

(32.45, 

34.35) 

(32.55, 

33.80) 

(33.60, 

34.42) 

(33.05, 

33.95) 

Bias-Accelerated 

(BCa) CI 

(35.98, 

37.55) 

(35.35, 

36.55) 

(32.40, 

34.40) 

(32.50, 

33.85) 

(33.55, 

34.45) 

(33.00, 

34.00) 

Studentized CI 35.95, 

37.60) 

(35.95, 

37.60) 

(32.35, 

34.45) 

(32.45, 

33.90) 

(33.50, 

34.50) 

(32.95, 

34.05) 

Table 1 highlights the inverse relationship between standard error (SE) and sample size, 

illustrating that as the sample size increases, SE decreases. For instance, when N=50N = 50, 

SE is 0.40, whereas at N=1000N = 1000, SE drops to 0.18, indicating greater precision with a 
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larger sample. This supports the statistical principle that larger samples produce more accurate 

estimates of the population mean (Kelley & Maxwell, 2023; Xu & Dang, 2022). 

Each confidence interval (CI) method estimates the range within which the true population 

mean is expected to fall 95% of the time, though they handle variability differently. The Wald 

Confidence Interval performs well with large samples but is less reliable for small ones due to 

its assumption of normality, which can lead to inaccuracies under non-normal conditions 

(Agresti, 2021). The Profile Likelihood Confidence Interval is slightly wider than the Wald CI, 

reflecting greater uncertainty. For example, at N=50N = 50, the Profile Likelihood CI was 

(36.05, 37.60), demonstrating its flexibility in handling non-normality (Bolker, 2023). 

The Bootstrap Percentile Confidence Interval, based on resampling techniques, is particularly 

useful when the population distribution is unknown. At N=50N = 50, Bootstrap Percentile CI 

= (36.02, 37.50), making it a robust nonparametric alternative when traditional assumptions do 

not hold (Efron & Hastie, 2022). The Bias-Corrected and Accelerated (BCa) Confidence 

Interval refines the standard bootstrap by adjusting for bias and skewness, enhancing accuracy 

in non-normal distributions. At N=50N = 50, BCa CI was (35.98, 37.55), offering improved 

interval estimation, particularly for small samples (Davison & Hinkley, 2023). The Studentized 

Confidence Interval is more conservative, often yielding slightly wider intervals to account for 

sample variability. At N=50N = 50, the Studentized CI was (35.95, 37.60), providing more 

reliable estimates by incorporating an SE adjustment (Wilcox, 2023). 

Reliability estimates improve with increasing sample size, leading to more stable 

measurements. For example, at N=50N = 50, the reliability estimate is 0.64, whereas for 

N>1000N > 1000, it rises to 0.86. This aligns with Classical Test Theory (CTT), which states 

that reliability strengthens as sample size increases (McNeish & Wolf, 2022). 

Overall, larger sample sizes reduce SE, enhancing precision. The Bootstrap and Profile 

Likelihood confidence intervals offer more robust estimates for skewed or non-normal data, 

whereas the Wald confidence interval, though easy to compute, may underestimate uncertainty 

in small samples (Hox, Moerbeek, & van de Schoot, 2023). The BCa and Studentized 

confidence intervals improve on bootstrap methods by adjusting for bias and variability, 

resulting in more reliable confidence intervals (Efron & Hastie, 2022). As sample size 

increases, reliability also improves, ensuring greater stability and consistency in measurements. 

This underscores the importance of larger samples in generating precise and dependable data 

(Zumbo & Hubley, 2023). 

 

CONCLUSION  

Based on the findings of the study it was concluded that as sample size increases, standard error 

(SE) decreases, leading to more precise estimates of the population mean. This principle is 

evident across various CI methods, where larger samples yield narrower and more accurate 

confidence intervals.  The Wald confidence interval performs well with large samples but is 

less reliable for small samples or non-normal data. The Profile Likelihood confidence interval 

provides a slightly wider interval, incorporating uncertainty more effectively. Bootstrap-based 

methods (Percentile, Bias-Corrected and Accelerated, and Studentized confidence intervals) 

offer robust alternatives for non-normal distributions, with the BCa method improving 

accuracy by adjusting for bias and skewness. 
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RECOMMENDATIONS 

Based on the findings of the study, it was recommended as: 

1. To enhance reliability and reduce standard error, prioritize larger sample sizes in 

research. 

2. For large samples, use Wald CI; for small samples or skewed data, opt for Profile 

Likelihood or Bootstrap CIs. 

3. Future research should investigate advanced CI methods, especially in high-dimensional 

or machine learning-based studies. 
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