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ABSTRACT: This study evaluates the robustness of Ordinary Least 

Squares (OLS) and Double Weighted M-Estimation (DWME) methods 

for predicting crude oil prices in Nigeria, focusing on predictive 

accuracy and generalization. Using 192 monthly data points (2006–

2021) from the Central Bank of Nigeria (CBN) and Nigerian National 

Petroleum Company Limited (NNPCL), the dataset included crude oil 

prices, production, crude oil production, and exchange rates, with 

synthetic datasets simulated via multivariate normal distribution for 

varying dimensions (n = 10 to 1,000). The performance measures such 

as Mean Squared Error (MSE), Mean Absolute Error (MAE), and R-

squared were assessed. Results showed comparable MSE values for 

training data, with OLS_TRAIN ranging from 172.85 to 694.56 and 

DWME_TRAIN from 173.03 to 699.27. Testing data revealed DWME's 

marginal superiority, with slightly lower MSE (e.g., DWME_TEST 

median 548.68 vs. OLS_TEST median 543.85). MAE trends indicated 

consistency for both methods, with DWME showing marginally better 

stability across dimensions. R-squared values highlighted improved 

generalization for smaller datasets, with DWME_TEST peaking at 

0.7043 and OLS_TEST at 0.7544 for the 10x3 dimension. Both methods 

struggled with generalization as dimensions increased but exhibited 

stable training performance. In conclusion, DWME demonstrated 

slightly better robustness, especially in testing scenarios, affirming its 

suitability for predictive tasks involving economic and energy-related 

variables.  

KEYWORDS: Mean squared error, Mean absolute error, R-squared, 

Multivariate normal distribution, Crude oil production, Exchange rate. 
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INTRODUCTION 

In recent years, statistical methods for estimating causal relationships in the presence of 

confounding variables and complex data structures have gained increasing attention. Among these 

methods, Ordinary Least Squares (OLS) and Doubly Weighted M-Estimation (DWME) have 

emerged as prominent tools for predictive modelling and estimation in diverse fields, including 

healthcare, economics, and engineering. While OLS has long been the standard for linear 

regression analysis due to its simplicity and ease of interpretation, DWME, which incorporates 

weights to address biases from confounding variables, has shown promise in improving the 

robustness of estimates, particularly in complex settings with missing data or heterogeneous 

treatment effects. The OLS method, first developed by Gauss (1821), provides an efficient 

estimator under the assumption of homoscedasticity and no endogeneity. However, its 

performance can degrade when these assumptions are violated, such as in the presence of 

heteroscedasticity or omitted variable bias. Bun et al. (2019) innovatively propose generating 

instrumental variables using structural equation nonlinearity, ensuring robust IV inference. They 

validate OLS consistency for interaction terms and confirm nonlinear finance-growth causal 

relationships. Calkoen et al. (2021) evaluated shoreline forecasting methods, finding Machine 

Learning (ML) and traditional approaches outperform OLS, reducing MSE by 29%. ML shows 

computational efficiency, with potential for future performance enhancements in global coastal 

management. The work by Palomino et al. (2020) evaluated wind speed forecasting for Colombia's 

Caribbean coast using Autoregressive Integrated Moving Average (ARIMA) and Multiple 

Regression with Ordinary Least Squares (OLS), highlighting ARIMA's superior predictive 

performance for sustainable energy planning. The research by Zhu (2023) explored Bitcoin return 

forecasting using Ordinary Least Squares (OLS), Random Forest, Light Gradient Boosting 

Machine (LightGBM), and Long Short-Term Memory (LSTM), finding OLS offers simplicity and 

highest accuracy among models. Guo (2023) examined stock price forecasting for Apple, 

Microsoft, and Amazon using Ordinary Least Squares (OLS), Random Forest, and Extreme 

Gradient Boosting (XGBoost), finding OLS excels with low-frequency datasets. Lewis et al. 

(2023) explored fear extinction in posttraumatic stress disorder (PTSD) using Electromyography 

(EMG), Electrocardiogram (ECG), and Skin Conductance (SC). Penalized regressions 

outperformed Ordinary Least Squares (OLS), highlighting predictors like hyperarousal symptoms 

and depersonalization. Koh et al. (2020) addressed groundwater nitrate contamination on Jeju 

Island, South Korea, using Ordinary Least Squares (OLS) regression and Geographically 

Weighted Regression (GWR). GWR outperformed OLS, identifying spatially varying nitrate 

contributors, including orchards and urban areas. Jumaah et al. (2019) explored air quality 

monitoring using Geographic Information Systems (GIS) and Ordinary Least Squares (OLS) 

regression. An Air Quality Index (AQI) prediction algorithm achieved 96-99% accuracy, 

demonstrating GIS-OLS effectiveness for AQI prediction.  
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On the other hand, DWME, which extends the classical M-estimation framework by introducing 

doubly robust techniques, aims to address these limitations by combining propensity score 

weighting with regression adjustment. This method is particularly useful in scenarios where there 

is a need to estimate causal effects or treatment outcomes while controlling for confounding 

variables (Robins et al., 1994). The study by Sarvestani et al. (2016) highlighted the importance 

of robust statistical techniques in complex risk assessments, such as project management, where 

uncertainty and incomplete data are common. Their work demonstrated the utility of resampling 

methods like the Jackknife in improving the precision of estimates. Similarly, Bryan et al. (2019) 

utilized doubly robust estimation techniques to investigate the effects of adjuvant radiation on 

survival outcomes in pediatric patients, underscoring the method's potential in medical research. 

The work by Moodie et al. (2023) addressed the challenges of calculating personalized treatment 

guidelines for depression therapy within a binary outcome framework. Using a doubly robust 

regularized estimating equation, the study showcased the method's effectiveness in handling 

nonlinear relationships and variable selection, with potential implications for personalized 

treatment strategies in depression therapy. These studies, along with others by Sloczynski et al. 

(2022) and Cuerden et al. (2023), have shown that doubly robust methods can improve estimation 

accuracy and reduce bias, especially in the presence of complex data structures or missing values. 

Despite the growing body of research on DWME, there remains a gap in the literature regarding a 

direct comparison between OLS and DWME methods for crude oil price prediction in Nigeria in 

terms of their predictive accuracy and generalization ability across various dataset dimensions. 

While OLS is widely used for its simplicity and interpretability, its limitations in handling 

confounding factors and non-linear relationships are well-documented. On the other hand, 

DWME, although more flexible, is less commonly applied in broader contexts outside specialized 

fields such as causal inference and treatment effect estimation. Furthermore, while both methods 

have been studied individually, few studies have systematically compared their performance 

across different dimensions of data, including both training and testing scenarios, and in real-life 

applications. While previous studies have explored the application of DWME in specialized 

contexts, such as treatment effect estimation and risk assessment (Sarvestani et al., 2016), a 

comprehensive comparison of OLS and DWME across various dataset dimensions is lacking. 

Moreover, existing research often focuses on specific domains, such as healthcare or project 

management, without a broader evaluation of how these methods perform in different scenarios, 

particularly in terms of predictive accuracy and generalization. This study seeks to address this 

gap by providing a direct comparison of OLS and DWME across multiple dimensions, including 

both synthetic and real-life data, and by evaluating their performance in terms of key metrics like 

MSE, MAE, and R-squared. This comparative analysis offers valuable insights for practitioners 

and researchers in selecting the most appropriate method for their data modelling needs, 

particularly when dealing with complex datasets or when robustness is a critical concern. This 

study sought to fill this gap by systematically comparing the predictive accuracy and generalization 

capabilities of OLS and DWME methods across a range of dataset dimensions. By evaluating key 

performance metrics such as Mean Squared Error (MSE), Mean Absolute Error (MAE), and R-

squared values, the study provides insights into the strengths and limitations of both methods, 

offering practical recommendations for their use in predictive modelling tasks. In doing so, the 

research contributes to the growing literature on robust statistical methods and provides a more 
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nuanced understanding of how OLS and DWME compare in real-world applications, particularly 

in the context of model robustness and generalization. The objectives were to: Compare the MSE 

values of OLS and DWME methods across different dataset dimensions and assess their predictive 

accuracy in both training and testing datasets; evaluate the MAE values for both OLS and DWME 

methods and analyze their consistency and performance in real-world data applications; assess the 

R-squared values of OLS and DWME methods across various dimensions, focusing on their ability 

to fit training data and generalize to unseen data; investigate the performance trends of OLS and 

DWME methods in terms of generalization, with a particular focus on the impact of dataset 

dimension on model accuracy; and determine which method (OLS or DWME) offers superior 

robustness and consistency in predictive performance across training and test datasets. 

 

METHODS 

Source of Data collection for the study  

Several secondary data sources, including online repositories and official statistics, were used in 

this investigation. The dataset was the Nigeria Crude Oil Price, collected from the Central Bank 

of Nigeria (CBN) Statistical Bulletin and the Nigerian National Petroleum Company Limited 

(NNPC) for 16 years (2006-2021), with 192 monthly data points on crude oil prices, production, 

and exchange rates (192 x 5 dimensions). The data used in this study was simulated to reflect 

realistic economic and energy-related variables, which include exchange rates, crude oil prices, 

and crude oil production, based on historical observations. The initial dataset, containing 30 

observations, was analyzed to calculate means, standard deviations, and a correlation matrix to 

capture the central tendencies, variability, and interdependencies among the variables. Using these 

statistics, a covariance matrix was constructed, and synthetic datasets were generated via 

multivariate normal simulation with the mvrnorm function, ensuring the simulated data retained 

the statistical properties of the original dataset. To facilitate analysis across different sample sizes, 

datasets were simulated for various n-values ranging from 10 to 1,000, with a fixed random seed 

to ensure reproducibility. 

 

METHODOLOGY 

This section evaluates the performance of Ordinary Least Squares (OLS) and Double Weighted 

M-Estimation (DWME) methods using key metrics, including Mean Squared Error (MSE), Mean 

Absolute Error (MAE), and R-squared. To assess the performance of Ordinary Least Squares 

(OLS) and Double Weighted Mean Estimation (DWME) methods, several evaluation metrics, 

including Mean Squared Error (MSE), Mean Absolute Error (MAE), and R-squared, were 

computed across various dataset dimensions.  
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Ordinary Least Squares (OLS) Method 

The OLS is a linear regression technique that minimizes the sum of squared residuals to estimate 

the parameters of a linear model (White, 1980). For a given dataset Y with predictors X, the OLS 

estimator 𝛽̂ is given by Gauss (1821) as: 

𝛽̂ = (𝑋Τ𝑋)−1𝑋Τ𝑌                                                                                     (1) 

Where: 

X is the matrix of predictor variables (design matrix), 

Y is the vector of dependent variables (responses), 

𝛽̂ is the vector of estimated coefficients. 

The MSE measures the average squared difference between the predicted and actual values. Lower 

MSE indicates better model performance. The MSE for OLS is calculated as: 

𝑀𝑆𝐸𝑂𝐿𝑆 =
1

𝑛
∑(𝑦𝑖 − 𝑦̂𝑖)

2

𝑛

𝑖=1

                                                                        (2) 

Where: 

𝑦𝑖 is the actual value for the i-th observation,  

  𝑦̂𝑖 is the predicted value for the i-th observation, 

n is the number of observations. 

Similarly, the MAE measures the average absolute difference between the predicted and actual 

values (Huber, 1967). A smaller MAE suggests better accuracy. The MAE is computed as: 

𝑀𝐴𝐸𝑂𝐿𝑆 =
1

𝑛
∑|𝑦𝑖 − 𝑦̂𝑖|

𝑛

𝑖=1

                                                                        (3) 

Also, the R-squared represents the proportion of the variance in the dependent variable that is 

predictable from the independent variables. Higher R-squared values indicate better model fit. The 

R-squared value is given by: 

𝑅𝑂𝐿𝑆
2 = 1 −

∑ (𝑦𝑖 − 𝑦̂𝑖)
2𝑛

𝑖=1

∑ (𝑦𝑖 − 𝑦̅𝑖)2𝑛
𝑖=1

                                                                      (4) 
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Where  𝒚̅𝒊 is the mean of the observed values. 

Double Weighted M-Estimation (DWME) Method 

The DWME is an advanced estimator that incorporates additional weighting to improve robustness 

and accuracy, particularly in the presence of heteroscedasticity or non-normality in the data. The 

DWME is computed using the following formula: 

𝛽̂𝐷𝑊𝑀𝐸 = (𝑋Τ𝑊𝑋)−1𝑋Τ𝑊𝑌                                                                                         (5) 

Where: 

W is the weight matrix, typically derived from the inverse of the variance-covariance matrix of the 

errors. 

The MSE, MAE, and R-squared for DWME are calculated similarly to OLS, with the predictions 

𝑦̂𝐷𝑊𝑀𝐸 obtained from the DWME model (Green, 2018). Specifically: 

𝑀𝑆𝐸𝐷𝑊𝑀𝐸 =
1

𝑛
∑(𝑦𝑖 − 𝑦̂𝐷𝑊𝑀𝐸,𝑖)

2
𝑛

𝑖=1

                                                                               (6) 

𝑀𝐴𝐸𝐷𝑊𝑀𝐸 =
1

𝑛
∑|𝑦𝑖 − 𝑦̂𝐷𝑊𝑀𝐸,𝑖|

𝑛

𝑖=1

                                                                                 (7) 

 

𝑅𝐷𝑊𝑀𝐸
2 = 1 −

∑ (𝑦𝑖 − 𝑦̂𝐷𝑊𝑀𝐸,𝑖)
2𝑛

𝑖=1

∑ (𝑦𝑖 − 𝑦̅𝑖)2𝑛
𝑖=1

                                                                            (8) 

 

Data Calibration 

The data was split into training and testing sets using a 70:30 ratio. The training set was 70% of 

the total sample and was used to train the predictive models, while the testing set (remaining 30%) 

which was used to evaluate their performance in a new data set (out of sample evaluation) for both 

the real life data and the simulated data. 
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RESULTS  

This section presents a comparative analysis of the Ordinary Least Squares (OLS) and the Data 

Weighted Mean Estimation (DWME) methods using key metrics such as Mean Squared Error 

(MSE), Mean Absolute Error (MAE), and R-squared values across various dataset dimensions. 

Table 1: Comparative MSE Values for OLS and DWME Methods 

Dimension OLS_TRAI

N 

OLS_TES

T 

DWME_TRAI

N 

DWME_TES

T 

10 x 3 363.8084 1163.1820 363.9328 1154.5420 

15 x 3 523.0063 678.2833 523.2392 675.5485 

20 x 3 496.9764 543.8451 497.2453 548.6789 

25 x 3 172.8451 142.5535 173.0350 144.3527 

30 x 3 231.2833 581.4065 231.7852 590.9240 

40 x 3 393.1058 940.0285 397.4110 930.9866 

50 x 3 694.5629 369.8428 699.2696 367.2570 

100 x 3 492.6204 483.951 492.8528 483.5782 

200 x 3 466.6434 557.0752 467.6052 544.2203 

500 x 3 525.4250 574.3164 525.9604 577.5054 

1000 x3 514.5359 430.4405 514.5957 430.4121 

Real_Life_data (192 x 3) 496.9764 543.8451 497.2453 548.6789 

 

The results in Table 1 compare the Mean Squared Error (MSE) values for OLS and DWME 

methods across various dataset dimensions. For training data, both methods exhibit comparable 

performance, with OLS_TRAIN MSE ranging from 172.85 (25 x 3) to 694.56 (50 x 3), and 

DWME_TRAIN ranging from 173.03 (25 x 3) to 699.27 (50 x 3). Testing data shows more 

variability, with OLS_TEST MSE ranging from 142.55 (25 x 3) to 1163.18 (10 x 3), while 

DWME_TEST ranges from 144.35 (25 x 3) to 1154.54 (10 x 3). Notably, the Real_Life_data (192 

x 3) scenario shows similar MSE values for both methods: 496.98 (OLS_TRAIN) vs. 497.25 

(DWME_TRAIN) and 543.85 (OLS_TEST) vs. 548.68 (DWME_TEST). The DWME slightly 

outperforms OLS in terms of testing data consistency, with marginally lower MSE in most cases, 

indicating better robustness in predictive accuracy. 

Table 2: Comparative MAE Values for OLS and DWME Methods 

Dimension OLS_TRAI

N 

OLS_TES

T 

DWME_TRAI

N 

DWME_TES

T 

10 x 3 17.7625 29.1384 17.6997 29.1038 

15 x 3 18.1597 20.8272 18.1237 20.6953 

20 x 3 18.9948 20.0429 18.9969 20.1404 

25 x 3 10.2211 10.1253 10.2209 10.1003 

30 x 3 11.6589 21.0248 11.6347 21.0054 

40 x 3 15.8773 28.1951 15.5859 28.0857 
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50 x 3 20.9893 16.2051 20.6825 16.3926 

100 x 3 18.0889 16.6276 18.0781 16.6341 

200 x 3 16.9879 19.6949 16.9634 19.3635 

500 x 3 17.6582 19.5152 17.6515 19.5908 

1000 x3 18.0588 16.9217 18.0589 16.918 

Real_Life_data (192 x 3) 20.1404 18.9969 20.0429 18.9948 

 

The result presented in Table 2 shows the Mean Absolute Error (MAE) values for the OLS and 

DWME methods across different dimensions. The MAE values for OLS and DWME methods are 

relatively similar across the training and testing datasets, with slight variations depending on the 

dimension. For instance, in the 10x3 dimension, the MAE for OLS_TRAIN is 17.7625, while 

DWME_TRAIN is 17.6997, indicating minimal difference. Similarly, in the 100x3 dimension, 

both OLS_TEST (16.6276) and DWME_TEST (16.6341) show close values. Notably, the MAE 

values tend to decrease for both methods as the dimension increases, with a peak at the 50x3 

dimension, where OLS_TEST has a value of 16.2051, and DWME_TEST has a value of 16.3926. 

The real-life data (192x3) shows similar trends, with OLS_TEST (18.9969) and DWME_TEST 

(18.9948) values being nearly identical, suggesting that both methods perform comparably well in 

real-world applications. 

Table 3: Comparative R-Square Values for OLS and DWME Methods 

Dimension OLS_TRAI

N 

OLS_TEST DWME_TRAIN DWME_TEST 

10 x 3 0.3539 0.7544 0.3535 0.7043 

15 x 3 0.2832 0.2142 0.2828 0.2093 

20 x 3 0.3067 0.0733 0.3064 0.0651 

25 x 3 0.4953 0.0524 0.4947 0.0404 

30 x 3 0.5275 0.0212 0.5265 0.0379 

40 x 3 0.3775 0.0707 0.3707 0.0604 

50 x 3 0.2814 0.4399 0.2765 0.4438 

100 x 3 0.3157 0.1101 0.3154 0.1108 

200 x 3 0.3065 0.2226 0.3051 0.2405 

500 x 3 0.1805 0.3032 0.1797 0.2993 

1000 x3 0.2518 0.2172 0.2517 0.2172 

Real_Life_data (192 x 3) 0.3067 0.0733 0.3064 0.0651 

 

The R-squared values for both OLS and DWME methods across different dimensions in Table 3 

reveal distinct performance patterns. In the OLS_TRAIN dataset, the R-squared values range from 

0.1805 to 0.5275, with the highest value observed at the 30x3 dimension (0.5275), indicating a 

relatively better fit of the model to the training data in larger dimensions. However, the OLS_TEST 

dataset shows a wider range, from 0.0212 to 0.7544, with the 10x3 dimension achieving the highest 

test R-squared value (0.7544), suggesting that the model's ability to generalize to unseen data is 
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more variable. For the DWME_TRAIN dataset, R-squared values range from 0.1797 to 0.5265, 

with values closely mirroring the OLS_TRAIN results, indicating stable performance across 

training sets. In the DWME_TEST dataset, R-squared values range from 0.0379 to 0.7043, with 

the 10x3 dimension again showing the highest value (0.7043), but the model's performance on test 

data is generally lower than on training data. This suggests that both methods, especially DWME, 

struggle with generalization as the dimensions increase, with smaller dimensions performing better 

in terms of R-squared values. 

 

Figure 2: The Boxplot comparing the MSE values of the methods  
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The result presented in Figure 1 reveals the performance of OLS and DWME methods in training 

and testing scenarios based on MSE. For OLS_TRAIN, the MSE ranges from 172.85 to 694.56 

with a median of approximately 496.98, showing moderate variability. OLS_TEST exhibits a 

wider range (142.55 to 1163.18) and a higher median of 543.85, indicating greater sensitivity to 

test data. Similarly, DWME_TRAIN has an MSE range of 173.03 to 699.27 with a median of 

497.25, closely resembling OLS_TRAIN. DWME_TEST shows a range of 144.35 to 1154.54 and 

a median of 548.68, slightly outperforming OLS_TEST in consistency. Hence, the DWME 

demonstrates marginally better performance, especially during testing, as reflected by its slightly 

lower median and comparable range. These indicate the relative robustness of DWME over OLS 

in this context. 

 

Figure 2: The Boxplot comparing the MAE values of the methods 
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The results in Figure 2 show the Mean Absolute Error (MAE) values for both OLS and DWME 

methods across training and testing datasets. For OLS_TRAIN, the MAE values range from 

10.2211 to 20.9893, with a general tendency for values to be lower in the earlier dimensions and 

higher in the later ones, indicating varying model performance across different dimensions. The 

OLS_TEST values range from 10.1253 to 29.1384, with the highest value observed in the 10x3 

dimension, which indicates that the model's testing performance fluctuates more significantly than 

its training performance. Similarly, for DWME_TRAIN, the MAE values range from 10.2209 to 

20.6825, with relatively consistent results across dimensions, indicating stable performance. In the 

DWME_TEST dataset, the MAE values range from 10.1003 to 29.1038, showing a similar trend 

to OLS_TEST, where higher values are observed in the smaller dimensions. Hence, both methods 

exhibit similar performance in terms of MAE across training and testing sets, with slight 

differences between the two, particularly in the test datasets. 

 

Figure 3: The Boxplot comparing the R-Square values of the methods 
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The boxplot values for the R-squared measures of both OLS and DWME methods across training 

and test datasets in Figure 3 reveal notable trends. For OLS_TRAIN, the R-squared values range 

from 0.1805 to 0.5275, with the highest value at the 30x3 dimension (0.5275), indicating a 

relatively better fit for the training data at this dimension. In contrast, the OLS_TEST values show 

considerable variability, ranging from 0.0212 to 0.7544, with the highest value at the 10x3 

dimension (0.7544), suggesting that the model performs better on smaller dimensions for unseen 

data. Similarly, the DWME_TRAIN values range from 0.1797 to 0.5265, with the best 

performance again at the 30x3 dimension (0.5265), showing a similar trend to OLS_TRAIN. 

However, for DWME_TEST, R-squared values range from 0.0379 to 0.7043, with the 10x3 

dimension achieving the highest value (0.7043), reflecting better generalization for smaller 

datasets. These results indicate that both methods show improved performance with smaller 

dimensions in terms of generalization (test data), but the overall fit is more stable in training data, 

especially for larger dimensions. 

 

CONCLUSION 

This study evaluated the robustness and predictive accuracy of Ordinary Least Squares (OLS) and 

Double Weighted M-Estimation (DWME) methods for predicting crude oil prices in Nigeria, 

focusing on their performance across various dataset dimensions. The comparative analysis 

revealed that both OLS and DWME exhibit comparable MSE values for training data, with DWME 

slightly outperforming OLS in testing scenarios. This suggests that DWME is marginally more 

robust in handling unseen data, providing better consistency and generalization in predictive 

accuracy. The MAE values for both methods were similar across training and testing datasets, with 

minimal differences. However, both methods show reduced MAE as dataset dimensions increase, 

indicating improved predictive performance with larger datasets. 

Also, both methods demonstrate stable performance in training datasets, with R-squared values 

peaking at intermediate dimensions (e.g., 30x3). In testing datasets, OLS achieves higher 

variability in R-squared values, while DWME exhibits slightly better generalization for smaller 

dimensions. This indicates that both methods perform well in capturing the variance in training 

data but face challenges in generalizing to test data, particularly as dataset dimensions increase. 

While both OLS and DWME are effective for predicting crude oil prices, DWME shows a 

marginal advantage in testing scenarios, indicating better robustness in predictive accuracy. The 

methods are comparable in terms of MAE and MSE, but DWME demonstrates slightly better 

consistency across dimensions, particularly for real-life data applications. Hence, DWME offers a 

marginally more robust alternative to OLS for crude oil price prediction, especially in scenarios 

requiring higher generalization. Both methods, however, benefit from larger datasets, which 

enhance their predictive accuracy and stability. These findings provide valuable insights for 

policymakers and industry stakeholders seeking reliable models for crude oil price forecasting in 

Nigeria. Future research could explore hybrid methods or alternative weighting schemes to further 

improve predictive performance. 

  



African Journal of Mathematics and Statistics Studies    

ISSN:  2689-5323  

Volume 8, Issue 1, 2025 (pp. 113-126) 

125  Article DOI: 10.52589/AJMSS-AZLQVEJB 

   DOI URL: https://doi.org/10.52589/AJMSS-AZLQVEJB 

www.abjournals.org 

REFERENCES  

Bryan, B., Christensen, M., Burt, L., & Poppe, M. (2019). The Value of High-Dose Radiotherapy 

in Pediatric Intracranial Ependymoma. International Journal of Radiation 

Oncology*Biology*Physics, 105(4), 908. https://doi.org/10.1016/j.ijrobp.2019.07.032 

Bun, M. J. G., & Harrison, T. D. (2019). OLS and IV estimation of regression models including 

endogenous interaction terms. Econometric Reviews, 38(7), 814–827. 

https://doi.org/10.1080/07474938.2018.1427486 

Calkoen, F., Luijendijk, A., Rivero, C. R., Kras, E., & Baart, F. (2021). Traditional vs. Machine-

learning methods for forecasting sandy shoreline evolution using historic satellite-derived 

shorelines. Remote Sensing, 13(5), 1–21. https://doi.org/10.3390/rs13050934 

Cuerden, M. S., Diao, L., Cotton, C. A., & Cook, R. J. (2022). Doubly weighted estimating 

equations and weighted multiple imputation for causal inference with an incomplete 

subgroup variable. Biostatistics and Epidemiology, 6(2), 266–284. 

https://doi.org/10.1080/24709360.2022.2069457 

Gauss, C. F. (1821). Theoria combinationis observationum erroribus minimis obnoxiae, Heinrich 

Dieterich, Göttingen 

Greene, W. (2018). Econometric Analysis. 8th Edition, Pearson Education Limited, London. 

Guo, C. (2023). Technology Industry Stock Price Prediction Based on OLS, Random Forest, and 

Extreme Gradient Boosting. Advances in Economics, Management and Political Sciences, 

22(1), 1–8. https://doi.org/10.54254/2754-1169/22/20230280 

Huber, P.J. (1967). The Behavior of Maximum Likelihood Estimates under Nonstandard 

Conditions. In: Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and 

Probability, University of California Press, Berkeley, Vol. 1, 221-223. 

Jumaah, H. J., Ameen, M. H., Kalantar, B., Rizeei, H. M., & Jumaah, S. J. (2019). Air quality 

index prediction using IDW geostatistical technique and OLS-based GIS technique in Kuala 

Lumpur, Malaysia. Geomatics, Natural Hazards and Risk, 10(1), 2185–2199. 

https://doi.org/10.1080/19475705.2019.1683084 

Koh, E. H., Lee, E., & Lee, K. K. (2020). Application of geographically weighted regression 

models to predict spatial characteristics of nitrate contamination: Implications for an 

effective groundwater management strategy. Journal of Environmental Management, 268. 

https://doi.org/10.1016/j.jenvman.2020.110646 

Lewis, M. W., Webb, C. A., Kuhn, M., Akman, E., Jobson, S. A., & Rosso, I. M. (2023). Predicting 

Fear Extinction in Posttraumatic Stress Disorder. Brain Sciences, 13(8). 

https://doi.org/10.3390/brainsci13081131 

Moodie, E. E. M., Bian, Z., Coulombe, J., Lian, Y., Yang, A. Y., & Shortreed, S. M. (2023). 

Variable selection in high dimensions for discrete-outcome individualized treatment rules: 

Reducing severity of depression symptoms. Biostatistics. 

Palomino, K., Reyes, F., Núñez, J., Valencia, G., & Acosta, R. H. (2020). Wind speed prediction 

based on univariate ARIMA and OLS on the Colombian Caribbean coast. Journal of 

Engineering Science and Technology Review, 13(3), 200–205. 

https://doi.org/10.25103/jestr.133.22 

https://doi.org/10.1016/j.ijrobp.2019.07.032
https://doi.org/10.1080/07474938.2018.1427486
https://doi.org/10.3390/rs13050934
https://doi.org/10.1080/24709360.2022.2069457
https://doi.org/10.54254/2754-1169/22/20230280
https://doi.org/10.1080/19475705.2019.1683084
https://doi.org/10.1016/j.jenvman.2020.110646
https://doi.org/10.3390/brainsci13081131
https://doi.org/10.25103/jestr.133.22


African Journal of Mathematics and Statistics Studies    

ISSN:  2689-5323  

Volume 8, Issue 1, 2025 (pp. 113-126) 

126  Article DOI: 10.52589/AJMSS-AZLQVEJB 

   DOI URL: https://doi.org/10.52589/AJMSS-AZLQVEJB 

www.abjournals.org 

Robins, J. M., Rotnitzky. A., and Zhao, L. P. (1994), ‘Estimation of regression coefficients when 

some regressors are not always observed’. Journal of the American Statistical Association, 

89, 846–866. 

Sarvestani, M. R. E., Shahraki, M. R., & Anisseh, M. (2016). Developing a new project risk 

ranking model by means of jackknife resampling method consider interval analysis. Journal 

of Intelligent and Fuzzy Systems, 30(5), 2593–2600. https://doi.org/10.3233/IFS-151877 

Sloczynski, T., Uysal, S. D., & Wooldridge, J. M. (2022). Doubly Robust Estimation of Local 

Average Treatment Effects Using Inverse Probability Weighted Regression Adjustment. 

SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4291739 

White, H. (1980). A Heteroskedasticity-Consistent Covariance Matrix and a Direct Test for 

Heteroskedasticity. Econometrica, 48, 817-838. https://doi.org/10.2307/1912934 

Zhu, G. (2023). Bitcoin Return Prediction based on OLS, Random Forest, LightGBM, and LSTM. 

BCP Business & Management, 38, 276–283. https://doi.org/10.54691/bcpbm.v38i.3698 

 

https://doi.org/10.3233/IFS-151877
https://doi.org/10.2139/ssrn.4291739
https://doi.org/10.54691/bcpbm.v38i.3698

