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ABSTRACT: This paper introduces a Block Hybrid Method for 

solving general second-order ordinary differential equations 

(ODEs) with initial value problems. The method is based on a 

continuous formulation of the second-order hybrid generalized 

Adams method, incorporating one off-grid point per step. Discrete 

schemes are derived from the continuous form and its first 

derivative, forming the block methods. Analysis shows the method 

is consistent, zero-stable, and convergent. Numerical results 

highlight its superiority over existing methods. 

KEYWORDS: Block Hybrid Method, Consistency, Zero-

stability, Convergent, and Second Derivative. 

 

A BLOCK HYBRID METHOD FOR THE DIRECT SOLUTION OF  

),,( yyxfy   

U. J. Kalu1, M. S. Mahmud2*, M. Z. Idris3, and I. S. Zahid4 

1Department of Mathematics and Statistics, Faculty of Natural Science, University of Jos, 

Jos, Nigeria. 

2Department of Mathematics and Statistics, Faculty of Science, Federal University of 

Kashere, Gombe State, Nigeria. 

3Department of Mathematics and Statistics, Faculty of Natural Science, University of Jos, 

Jos, Nigeria. 

4Department of Mathematics and Statistics, Faculty of Natural Science, University of Jos, 

Jos, Nigeria. 

*Corresponding Author’s Email: mahmudshamsuddeen1890@gmail.com 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cite this article: 

U. J. Kalu, M. S. Mahmud, M. 

Z. Idris, I. S. Zahid (2025), A 

Block Hybrid Method for the 

Direct Solution of 

y^(”)=f(x,y,y^(’)). African 

Journal of Mathematics and 

Statistics Studies 8(1), 220-

234. DOI: 10.52589/AJMSS-

BMGEEJXE 

 

Manuscript History 

Received: 21 Jan 2025 

Accepted: 8 Feb 2025 

Published: 9 Apr 2025 

 

Copyright © 2025 The Author(s). 
This is an Open Access article 

distributed under the terms of 

Creative Commons Attribution-
NonCommercial-NoDerivatives 

4.0 International (CC BY-NC-ND 

4.0), which permits anyone to 
share, use, reproduce and 

redistribute in any medium, 

provided the original author and 
source are credited.  

 

 

mailto:mahmudshamsuddeen1890@gmail.com


African Journal of Mathematics and Statistics Studies   

ISSN: 2689-5323   

Volume 8, Issue 1, 2025 (pp. 220-234) 

221  Article DOI: 10.52589/AJMSS-BMGEEJXE 

   DOI URL: https://doi.org/10.52589/AJMSS-BMGEEJXE 

www.abjournals.org 

INTRODUCTION 

Ordinary differential equations (ODEs) with second-order initial value problems (IVPs) are 

crucial for simulating dynamic systems in a variety of domains, including fluid flow, electrical 

circuits, and mechanical oscillations. These problems are mathematically formulated as: 

𝑦′′ = 𝑓(𝑥, 𝑦, 𝑦′), 𝑦(𝑥0) = 𝑦0, 𝑦′(𝑥0) = 𝑦1.                                                      (1) 

Most real-world systems are quite complex; finding analytical solutions to such equations is 

frequently impossible. Numerical approaches have become indispensable for approximating 

the solutions to these equations. Conventionally, second-order ordinary differential equations 

are resolved by transforming them into systems of first-order equations, which are subsequently 

tackled using numerical methods tailored for first-order systems. 

However, this approach increases computational complexity and can introduce numerical 

instability (Awoyemi et al., 2015). 

To overcome these challenges, recent advancements in numerical analysis have focused on 

direct methods that solve second-order ODEs without reduction. Familua and Omole (2017) 

introduced a five-point mono-hybrid point method to address the inefficiencies of traditional 

methods. Jator and Sennah (2018) proposed continuous collocation methods, which offer 

improved accuracy and computational efficiency. These methods use collocation and 

interpolation techniques to approximate solutions at multiple points within a block. 

Block hybrid methods, such as those presented by Li, Wang, and Lu (2018), are particularly 

advantageous as they avoid the overlapping computations associated with predictor-corrector 

methods. The ability to solve for multiple points simultaneously reduces computational costs 

and enhances numerical stability. Olakiitan, Uwaheren and Obarhua (2017) demonstrated the 

effectiveness of Taylor series-based algorithms in achieving higher-order accuracy for second-

order IVPs. 

This study builds on these recent developments by presenting a new block hybrid method 

derived using power series functions as the basis. Tunde and Temilade (2019) showed that 

hybrid block methods could efficiently address second-order problems without requiring 

reduction, significantly improving solution accuracy. Similarly, Jator and Usoro (2020) 

highlighted the benefits of block methods in solving second-order ODEs directly, emphasizing 

their computational efficiency and accuracy. 

Definition 1 

A method (2) is said to be zero stable if no root of the first characteristics polynomial 





k

j

j
rjr

0
)( 

          (2) 

has modulus greater than one and every root with one is simple. 
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METHODOLOGY 

We first state the theorem that establishes the uniqueness of solutions of higher 

order ordinary differential equations. 

Theorem 2.1 

Given the general nth order initial value problem 

),...,,,( )1()(  nn yyyxfy     k

n mxy )( 0

)(

    (3) 

Let R be the region defined by the inequality 

0  0  where),1(,...,2,1,0  ,s   , t00  kforcntbcaxxx ttt .  

Suppose the function ),...,,,( 110 nsssxf  in (2.1) is  

● non negative, continuous and non decreasing in each x , 110 ,...,, nsss  in R; 

●   0),...,,,( 110 formmmxf n  ;00 axxx  and  

● 1,...,2,1,0   ,0  nkmk  then, the initial value problem (3) has a unique solution in R. 

Theorem 2.2 

Let I be an identity matrix of dimension )()( tmtm   and consider the matrices C  and 

  

D . Then from the method of matrix inversion of Sirisena et al (1997), we have  

(i) IDC            (4) 

(ii) 
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With matrix D  and C defined as: 
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The columns of C which gives the continuous coefficients 
)(xj
, 1,...,1,0  tj  and  

)(xj ,

1,...,1,0  mj can be obtained from the corresponding columns of 
1D ; thus, we have that (5) 

becomes  

    
TmtT

mnntnn xxCffyyxy ),...,,1(),...,,,...,()( 1

11



    (8) 

where T denotes Transpose   

Modifying the matrix inversion approach as used by Sirisena et al. (1997) as illustrated in 

Theorem (2.2), we obtain the continuous form of the discrete methods as for  3k  

 3322110

2

11 )()()()()()()()(
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 (9) 

where  ),( ,)()( xxyxg v )(1 xv , 
)(xj

are continuous coefficients of the methods to be 

determined for 3k using (6) and (9); we obtain D  as 

 

Using Maple 18, the inverse of the D matrix 
1 DC is computed and the entries of the inverse 

matrix are obtained.     
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By using Maple 18, each column of the inverse matrix obtained above is being multiplied by 

the row matrix ; we obtain the continuous coefficients of (9) and with 

some manipulation we obtain the continuous formulation of the form 
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where nxx 
 

Evaluating (10) at the following points hh 3 ,2 ,0 , and also differentiating (10) to obtain  
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 (11) 

and evaluating (11) also at the following points 
hhhh 3 ,2 , ,

2

1
 ,0

and manipulating the schemes 

obtained from evaluating (10) and (11), we obtain the following discrete schemes:  
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 (12) 

 

 

 

 

 

 

Modifying the matrix inversion approach as used by Sirisena (1997) for 4k , we obtain the 

continuous form of the discrete methods as 
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 (13)  

where  ),( ,)()( xvxyxg  )(1 xv
, 

)(xj
are continuous coefficients of the methods to be 

determined for 4k ; using (6) and (13) we obtain D  as 
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Using Maple 18, the inverse of the D matrix is computed and the entries of the inverse 

matrix are obtained.  

By using Maple 18, each column of the inverse matrix obtained above is being multiplied by 

the row matrix which gives the continuous coefficients of (13) and, 

with some manipulation, we obtain the continuous formulation of the form 
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(15) 

where nxx 
 

Evaluating (15) at the following points hhh 4 ,3 ,2 ,0  and also differentiating (15) to obtain 

)()( xyxg  as  
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And evaluating (16) also at the following points 
hhhhh 4 ,3 ,2 , ,

2

1
 ,0

 and manipulating the 

schemes obtained after evaluating (15) and (16), we obtain the following discrete schemes:  
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Equations (12) and (17) are our eight (8) and ten (10) block schemes which are of order  

 T66666666 and  T7777777777  

with error constants of 

 T   

 and  
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respectively. 

 

RESULT AND DISCUSSION 

A block method is said to be zero stable if as 0h , the roots krj 1,...,j ,1  which means 

that  

   0]det[)( 1)( ki RAr satisfying 1|| R must have multiplicity equal to unity (Fatunla 

S.O., 1991). 

For our method for k=3 

0)det()(  BA         (18) 

)( =  

The characteristics polynomial yield 

  0
62

1    

which yields the roots 
0

876543
 ,1

21
 

which are less than or 

equal to 1, i.e., 1  

Therefore, the method is zero stable. 

Similarly, the block method for k=4 is given by 
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)( =  

The characteristics polynomial yield 

  0
82

1    

which yields the roots 
0

109876543
 ,1

21
 

which are less 

than or equal to 1, i.e., 1  

Therefore, the method is zero stable. 

 

IMPLEMENTATION 

We shall use the discrete schemes of the methods (12) and (17) in block forms to solve initial 

value problems. The results obtained (numerical or approximate solution) shall be carefully 

examined by computing the absolute error of the methods. We shall derive the solution directly 

without reducing to a system of first order equations and the solution is obtained at once. 

Numerical Implementation 

Problem 1 
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Problem 2  

,sin
2

1
12

,sin
21

xyy

xyy









                          




1)0(
2

,1)0(
2

1)0(
1

,0)0(,
10

1

1

yy

yyh

  

Exact Solution  

xe
x

xy

e
x

xy

sin)(
2

1)(
1





    

Problem 3 
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Table 1: Table of Result for Problem 1  

𝑥 
𝑦1  𝑁𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙 
for k=3 

𝑦2  𝑁𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙 
for k=3  𝑦1 𝐸𝑥𝑎𝑐𝑡 𝑦2 𝐸𝑥𝑎𝑐𝑡 

𝑦1  𝑁𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙 
for k=4 

𝑦2  𝑁𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙 
for k=4 

0.10 1.005009168 0.100116833 1.005009168 0.100116833 1.005009166 0.100116833 

0.20 1.020086756 0.201236668 1.020086756 0.201236668 1.020086754 0.201236668 

0.30 1.045383515 0.304372533 1.045383515 0.304372533 1.045383517 0.304372533 

0.40 1.081152378 0.410557618 1.081152378 0.410557617 1.081152378 0.410557617 

0.50 1.127750987 0.520855594 1.127750987 0.520855593 1.127750986 0.520855593 

0.60 1.185645284 0.636371263 1.185645283 0.636371261 1.185645284 0.636371261 

0.70 1.255414171 0.758261597 1.255414169 0.758261593 1.25541417 0.758261593 

0.80 1.337755312 0.887747309 1.33775531 0.887747304 1.33775531 0.887747304 

0.90 1.433492125 1.026125069 1.433492124 1.026125062 1.433492124 1.026125062 

1.00 1.543582027 1.17478047 1.543582024 1.174780458 1.543582024 1.174780457 
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Table 2: Absolute Error of Problem 1   

 

Table 3: Table of Result for Problem 2 

𝑥 
𝑦1  𝑁𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙        
for k=3 

𝑦2  𝑁𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙 
for k=3  𝑦1 𝐸𝑥𝑎𝑐𝑡 𝑦2 𝐸𝑥𝑎𝑐𝑡 

𝑦1  𝑁𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙 
for k=4 

𝑦2  𝑁𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙 
for k=4 

0.10 -0.105170914 1.414226655 -0.105170918 1.414226653 -0.105170915 1.414226646 

0.20 -0.22140275 1.809253917 -0.221402758 1.809253919 -0.22140277 1.809253920 

0.30 -0.349858805 2.158947628 -0.349858808 2.158947626 -0.349858812 2.158947631 

0.40 -0.491824697 2.442931550 -0.491824698 2.442931552 -0.491824690 2.442931548 

0.50 -0.648721268 2.64872126 -0.648721271 2.64872125 -0.648721265 2.64872123 

0.60 -0.822118791 2.773099765 -0.8221188 2.773099762 -0.822118788 2.773099767 

0.70 -1.013752704 2.822602063 -1.013752707 2.822602066 -1.013752702 2.822602059 

0.80 -1.225540926 2.813062502 -1.225540928 2.813062509 -1.225540923 2.813062510 

0.90 -1.459603114 2.768271416 -1.459603111 2.768271416 -1.459603112 2.768271412 

1.00 -1.718281826 2.717874487 -1.718281828 2.717874482 -1.718281821 2.717874481 

 

 

         

 

𝑥 𝑦1 𝐸𝑟𝑟𝑜𝑟 3k for  

𝑦2 𝐸𝑟𝑟𝑜𝑟 

3k for  

𝑦1 𝐸𝑟𝑟𝑜𝑟 

4k for  

𝑦2 𝐸𝑟𝑟𝑜𝑟 

4k for  

0.10 5.71925E-19 1.15207E-19 2.0572E-19 1.11521E-20 

0.20 2.92035E-19 7.56965E-20 1.708E-19 7.56965E-21 

0.30 1.41362E-20 1.43812E-19 1.8586E-19 5.6188E-21 

0.40 4.72627E-20 8.68339E-20 4.7263E-19 1.68339E-20 

0.50 9.19613E-21 1.27555E-20 9.0804E-20 1.24445E-22 

0.60 9.56066E-20 1.88846E-20 9.5607E-21 8.84561E-21 

0.70 1.95988E-21 3.80409E-20 9.5988E-22 9.59148E-22 

0.80 1.57668E-21 5.25783E-21 4.2332E-22 4.21734E-23 

0.90 1.34264E-21 6.74664E-21 3.4264E-23 2.53362E-23 

1.00 3.02028E-22 1.18486E-21  2.0283E-23 1.1514E-24 
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Table 4: Absolute Error of Problem 2   

 

 

 

 

 

 

 

 

 

 

 

Table 5: Table of Result for Problem 3 

𝑥         3k 

 numerical 

for

y

               𝑦 𝐸𝑥𝑎𝑐𝑡 4k 

 numerical 

for

y

 

0.10 0.904837419 0.904837418 0.904837417 

0.20 0.818730756 0.818730753 0.818730754 

0.30 0.740818218 0.740818221 0.740818209 

0.40 0.670320044 0.670320046 0.670320043 

0.50 0.606530666 0.60653066 0.606530655 

0.60 0.548811617 0.548811636 0.548811624 

0.70 0.496585289 0.496585304 0.496585302 

0.80 0.449328985 0.449328964 0.449328898 

0.90 0.40656956 0.40656966 0.406569607 

1.00 0.367879362 0.367879441 0.367879446 

 

 

 

 

 

 

𝑥 

𝑦1 𝐸𝑟𝑟𝑜𝑟 

3k for  

𝑦2 𝐸𝑟𝑟𝑜𝑟 

3k for  

𝑦1 𝐸𝑟𝑟𝑜𝑟 

4k for  

𝑦2 𝐸𝑟𝑟𝑜𝑟 

4k for  

0.10 1.56E-18 4.00E-18 3.132E-20 4.00E-21 

0.20 2.56443E-18 3.132E-18 5.563E-19 3.132E-20 

0.30 1.0654E-17 3.00E-19 3.5762E-20 3.00E-21 

0.40 3.09876E-18 1.20E-19 3.076E-20 2.208E-21 

0.50 1.026426E-18 3.8762E-18 1.20E-19 3.8762E-21 

0.60 1.05425E-19 1.2432E-19 1.055E-20 1.2432E-22 

0.70 2.099873E-19 1.00E-19 2.099E-20 1.00E-22 

0.80 1.98762E-18 3.00E-19 2.082E-21 3.00E-23 

0.90 1.876252E-19 2.0082E-20 1.825E-21 2.0082E-23 

1.00 1.233345E-19 3.098E-20 1.233E-21 3.098E-23 
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Table 6: Absolute Error of Problem 3 

𝑥                                    3k 

  

for

errory

 4k 

  

for

errory

 

0.10 5.6404E-19 1.13596E-20 

0.20 2.62202E-19 1.22202E-21 

0.30 2.58172E-19 1.12817E-21 

0.40 1.63564E-19 3.03564E-21 

0.50 6.18737E-19 4.31263E-21 

0.60 1.8794E-20 1.1794E-21 

0.70 1.43914E-20 1.89141E-21 

0.80 2.05828E-20 6.59172E-22 

0.90 1.00241E-20 5.23406E-22 

1.00 7.87714E-20 4.72856E-22 

 

 

CONCLUSION  

We observe from the table that the method for the direct solution of Second Order Ordinary 

Differential Equations (ODEs) for step number k=4 performs better than for k=3. 

The step number k=4 performs relatively better than block second order hybrid methods for 

step number k=3 for all the problems. Thus, we conclude that from the table of error, accuracy 

and efficiency of the modified block second order hybrid methods for k=3, 4 is guaranteed. 

Finally, the block methods obtained from its continuous scheme with off-grid interpolation and 

collocation points at for k=4 performs better than k=3 from the table of absolute errors 

as they provide lesser errors when used to solve directly second order Ordinary Differential 

Equations (ODEs) without reducing to a system of first order ODEs. 
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