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ABSTRACT: This paper is concerned with the formulation of a 

scheme via construction of Canonical with Shifted-Chebyshev 

Polynomials (SCP), for the direct solution of fractional order 

integro-differential equations (FIDEs). Perturbation collocation 

method (PCB) is the approximate method developed, to handle a 

special singular class of fractional multi-order Volterra type for 

approximation. The process involves the incorporation of 

perturbation variables otherwise known as parameters, to the 

given mathematical models under consideration. Systems of 

equations are evolved, and the embedded unknown constants are 

sought for.   
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INTRODUCTION 

Perturbation method is a progressive method in the fields of applied and theoretical 

mechanics, based on the crucial roles it plays in the development of science and technology, 

most especially in this twentieth century. The method involves the existence of parameters, 

popularly called perturbation terms, that transform complex emergent models into less 

complicated mathematical equations. Hence, getting accurate solutions to the mathematical 

problems analytically is invariably difficult, even with the use of high performance 

computational soft-wares such as Mathematica, Matlab, Maple, and so on. Numerical 

methods are barely inefficient in handling problems akin to this nature, especially the 

nonlinear ones containing points of singularities. However, it has been verified and 

ascertained that perturbation method is one of the versatile and efficient analytical techniques 

for handling both linear and nonlinear problems as described in Nayfeh (1985 & 2000), 

Hinch (1991), Murdock (1985), Bush (1992), Kahn & Zarmi (1998). 

Fractional integro-differential equation (FIDEs) as a kind of fractional calculus, plays 

significant role in the concept of mathematical modeling of physical situations such as: 

models to reduce the spread of epidemic diseases and behaviour of electrical circuits e.t.c. It 

can either be linear or nonlinear, particularly in the fields of image processing, visco-

elasticity, heat-thermal system, fluid flow mechanism and solid dynamics  in applied sciences 

and engineering as illustrated in Mohammed et al. (2022). And due to its frequent 

occurrences, it has been extensively solved by varieties methods such as Yang & Hou (2013) 

and Khosrow et al. (2013), to mention but few.  

Numerical methods that are based on orthogonal polynomials have been utilized by several 

authors such as Okedayo et al. (2018), Owolanke et al. (2017 & 2019) among others, to 

provide approximate solutions to both calculus and fractional calculus problems, whereby 

block methods and collocation methods are adopted in the construction of the numerical 

schemes. Perturbation method is another approximation method whose reliability has been 

confirmed in handling fractional calculus and calculus problems. With the aid of the method, 

complex fractional problems had been tackled, simply by breaking down the equations into 

less complicated ones which could be achieved via adding perturbation terms in order to alter 

the original equation. For instance in Fatheah et al. (2017), variational iteration method 

(VIM) alongside homotopy perturbation method (HPM) are used to solve fractional integro-

differential equations of the nonlinear type; the solutions are derived via infinite convergent 

series. A class of fractional integro-differential equations are also solved in Huda et al. 

(2024), whereby Laplace transform method is merged with the perturbation iteration 

algorithm. Similarly, perturbation method in combination with the integral transform method 

solved a Fredholm type integro-differential equation of fractional order in Mohammed et al. 

(2022), whereby the results generated by the existing method align with that of the exact 

solutions.  

Furthermore, homotopy perturbation method (HPM) is another powerful tool for the solution 

of FIDEs. Its significance is verified and confirmed in Oyedepo et al. (2019) in which 

constructed orthogonal polynomials are used as initial approximation; and the emergence of 

the coefficients of the homotopy parameter is determined. Another numerical scheme that is 

based on the shifted Chebyshev polynomial and least square method is illustrated in Taiwo et 
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al. (2015) such that the approximate solution is meant to reduce FIDEs into system of 

equations. Thus in this paper, a reliable and very effective alternative method with the aids of 

constructed canonical polynomials, is developed to further address the challenges of 

analyzing models involving FIDEs. 

 

METHODOLOGY  

Assuming the fractional integro-differential equations of kth-order is of the form 

𝐼𝑞𝑦(𝑥) + 𝐴(𝑥)𝑦(𝑥) + 𝐵(𝑥)𝑦′(𝑥) + 𝐶(𝑥)𝑦′′(𝑥) + ⋯+ 𝑁(𝑥)𝑦𝑘(𝑥)

+ ∫
𝑦(𝑠)

(𝑚 − 𝑥)
𝑑𝑠 = 𝑔(𝑥),                                                                                  (5)

𝑥

0

 

where,  

𝐼𝑞𝑦(𝑥)          

=  

{
 
 

 
 1

(𝑚 − 𝑞 − 1)!
∫(𝑥 − 𝑞)𝑚−𝑞−1𝐷𝑚𝑓(𝜏)𝑑𝜏,          𝑚 − 1 < 𝑞 < 𝑚                                     (6)

𝑥

0

𝑑𝑚𝑓(𝑥)

𝑑𝑥𝑚
,   𝑞 = 𝑚,𝑚 ∈ ℵ                                                                                                                      

 

 Then equation (5) becomes 

𝐼𝑞𝑦(𝑥) + 𝐴(𝑥)𝑦(𝑥) + 𝐵(𝑥)𝑦′(𝑥) + 𝐶(𝑥)𝑦′′(𝑥) + ⋯+ 𝑁(𝑥)𝑦𝑘(𝑥) = 𝐺(𝑥)                 (7) 

Let a differential operator I be defined as  

𝐴
𝑑𝑞

𝑑𝑥𝑞
+ 𝐵

𝑑2

𝑑𝑥2
+ 𝐶

𝑑3

𝑑𝑥3
+⋯+𝑁

𝑑𝑛

𝑑𝑥𝑛
≡ 𝐼                                                                             (8) 

  𝐼𝑥𝑗 =
𝛤(𝑗 + 1)

𝛤(𝑗 + 1 − 𝑞)
𝑥𝑗−𝑞 + 𝐴𝑥𝑗 + 𝐵(𝑗)𝑥𝑗−1 + 𝐶(𝑗)(𝑗 − 1)𝑥𝑗−2 +⋯

+𝑁(𝑗)(𝑗 − 1)(𝑗 − 2)… (𝑗 − 𝑘 + 1)𝑥𝑗−𝑘                                           (9) 

With the aid of Lanczos (1956) 

𝐷𝑝𝑗(𝑥) = 𝑥
𝑗  , 𝑗 = 0,1,2, …                                                                                                   (10) 

 equation (9) is transformed to 

  𝐼𝑥𝑗 =
𝛤(𝑗 + 1)

𝛤(𝑗 + 1 − 𝑞)
𝐷𝑝𝑗−𝑞(𝑥) + 𝐴𝐷𝑝𝑗(𝑥) + 𝐵(𝑗)𝐷𝑝𝑗−1(𝑥) + 𝐶(𝑗)(𝑗 − 1)𝐷𝑝𝑗−2(𝑥) + ⋯

+ 𝑁(𝑗)(𝑗 − 1)(𝑗 − 2)… (𝑗 − 𝑘 + 1)𝐷𝑝𝑗−𝑘(𝑥)                                (11) 

With the existence of the inverse of 𝐼 in equation (11), it becomes 
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  𝑥𝑗 =
𝛤(𝑗 + 1)

𝛤(𝑗 + 1 − 𝑞)
𝑝𝑗−𝑞(𝑥) + 𝐴𝑝𝑗(𝑥) + 𝐵(𝑗)𝑝𝑗−1(𝑥) + 𝐶(𝑗)(𝑗 − 1)𝑝𝑗−2(𝑥) + ⋯

+ 𝑁(𝑗)(𝑗 − 1)(𝑗 − 2)… (𝑗 − 𝑘 + 1)𝑝𝑗−𝑘(𝑥)                                          (12) 

Equation (12) can equivalently be written as  

𝑝𝑗(𝑥) =
1

𝐴
{  𝑥𝑗

− [ 
𝛤(𝑗 + 1)

𝛤(𝑗 + 1 − 𝑞)
𝑝𝑗−𝑞(𝑥) + 𝐴𝑝𝑗(𝑥) + 𝐵(𝑗)𝑝𝑗−1(𝑥) + 𝐶(𝑗)(𝑗 − 1)𝑝𝑗−2(𝑥)

+ ⋯+ 𝑁(𝑗)(𝑗 − 1)(𝑗 − 2)… (𝑗 − 𝑘 + 1)𝑝𝑗−𝑘(𝑥)] }                                      (13) 

In furtherance,  

𝑝𝑗(𝑥) =
1

𝐴
{  𝑥𝑗

− [
𝛤(𝑗 + 1)

𝛤(𝑗 + 1 − 𝑞)
𝑝𝑗−𝑞(𝑥) + 𝐵(𝑗)𝑝𝑗−1(𝑥) + 𝐶(𝑗)(𝑗 − 1)𝑝𝑗−2(𝑥) + ⋯

+𝑁(𝑗)(𝑗 − 1)(𝑗 − 2)… (𝑗 − 𝑘 + 1)𝑝𝑗−𝑘(𝑥) ] }                                          (14) 

is the required canonical polynomial of 𝑘𝑡h order fractional integro-differential equations. It 

can therefore be deduced that the 

 first order is represented as 

𝑝𝑗(𝑥) =
1

𝐴
{  𝑥𝑗 − [

𝛤(𝑗 + 1)

𝛤(𝑗 + 1 − 𝑞)
𝑝𝑗−𝑞(𝑥) + 𝐵(𝑗)𝑝𝑗−1(𝑥)] } 

 , 𝑗 = 0,1,2, ….                                                                                  (15) 

 the second order is represented as 

𝑝𝑗(𝑥) =
1

𝐴
{  𝑥𝑗 − [

𝛤(𝑗+1)

𝛤(𝑗+1−𝛼)
𝑝𝑗−𝛼(𝑥) + 𝐵(𝑗)𝑝𝑗−1(𝑥) + 𝐶(𝑗)(𝑗 − 1)𝑝𝑗−2(𝑥)] } ,  

 𝑗 = 0,1,2, ….                                       (16) 

    Perturbed Collocation Method (PCM) 

In this method, the set of canonical polynomials generated from the scheme developed in 

equation (14) will be applied as basis function for the approximation of any given nonlinear 

and linear fractional integro-differential equations. The concept of PCM is the addition to 

equation (5) a perturbation term 𝐻𝑛(𝑥) which causes the equation 
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𝐼𝑞𝑦(𝑥) + 𝐴(𝑥)𝑦(𝑥) + 𝐵(𝑥)𝑦′(𝑥) + 𝐶(𝑥)𝑦′′(𝑥) +⋯+ 𝑁(𝑥)𝑦𝑘(𝑥)

+ ∫
𝑦(𝑠)

(𝑚 − 𝑥)
𝑑𝑠 = 𝑔(𝑥) + 𝐻𝑛(𝑥), 𝑎 ≤ 𝑥 ≤ 𝑏

𝑥

0

≤                                                                                (17𝑎) 

subject to the conditions 𝑦𝑘
𝑛
(0) = 𝑦𝑘, 𝑘 = 0,1,2, … , 𝑛 − 1               (17b) 

to have an exact polynomial solution 𝑦𝑛(𝑥) that satisfies exactly the given conditions  

𝑦𝑖
𝑁
(0) = 𝛼𝑖 , 𝑖 = 0,1,2, … , 𝑛 − 1           (18)  

where 𝐻𝑛(𝑥) is defined as follow 

𝐻𝑛(𝑥) = ∑ 𝜏𝑘𝑇𝑁−𝑘+1(𝑥), 𝑥𝜖[𝑎, 𝑏]
𝑁
𝑘=1 , (18𝑎)  

𝛼𝑗; 𝜏𝑘;  𝑗 = 0,1, … ,𝑁; 𝑘 = 1,… , 𝑛, (18𝑏) 

The choice of 𝑇𝑁−𝑘(𝑥) is the set of shifted Chebyshev polynomials defined for 𝑥𝜖[𝑎, 𝑏] that 

characterized the Lanczos tau method (Lanczos, 1956). A form of collocation method used in 

Owolanke (2019), involving collocating equation (17) at (N+1) equally spaced interior points 

on [𝑎, 𝑏] in addition to the (𝑛 − 1) conditions of equation (18) which is to be satisfied by 

𝑦𝑛(𝑥). These collocation equations lead to (N+n+1) algebraic equations for the unique 

determination of (N+n+1) parameters. 

Solving equation (17) 

Shifted Chebyshev Polynomials (SCP) 

Chebyshev polynomials belong to a family of orthogonal polynomials in the interval 

[−1,1]. They are widely useful for their good properties in the approximation of functions. 

The Chebyshev polynomial of the first kind of degree 𝑛 denoted by 𝑇𝑛 is defined as follows 

𝑇𝑘(𝑥) = 𝑐𝑜𝑠𝑘𝜃                        (18) 

𝜃 = 𝑐𝑜𝑠−1𝑥                    (19) 

The recurrence relation is given by  

𝑇𝑘+1(𝑥) = 2𝑥𝑇𝑘(𝑥) − 𝑇𝑘−1(𝑥), 𝑘 ≥ 1       (20) 

Given a fractional order integro-differential equation of the form  

𝐼𝑞𝑦(𝑥) + 𝐴(𝑥)𝑦(𝑥) + 𝐵(𝑥)𝑦′(𝑥) + 𝐶(𝑥)𝑦′′(𝑥) + ⋯+ 𝑁(𝑥)𝑦𝑘(𝑥)

+ ∫
𝑦(𝑠)

(𝑚 − 𝑥)
𝑑𝑠 = 𝑔(𝑥) + 𝐻𝑧(𝑥),

𝑥

0

𝑚 ≤ 𝑥 ≤ 𝑛                                                                      (21) 

However, for the purpose of this paper, the Chebyshev polynomials valid in the interval 

[𝑚, 𝑛] defined as  
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𝑇𝑘(𝑥) = cos (𝑘𝑐𝑜𝑠
−1 [

2𝑥 − 𝑚 + 𝑛

𝑚 − 𝑛
]) , 𝑘 ≥ 0                  (22) 

The recurrence relation is given as  

𝑇𝑘+1(𝑥) = 2 (
2𝑥 − 𝑚 + 𝑛

𝑚 − 𝑛
)𝑇𝑘(𝑥) − 𝑇𝑘−1(𝑥) , 𝑘 ≥ 0                (23) 

shifting [−1,1] on 𝑦 = 𝑢𝑥 + 𝑣 to [𝑚, 𝑛] gives 

𝑚 = −𝑢 + 𝑣 

and 

𝑛 = 𝑢 + 𝑣 

Hence, 𝑣 =
𝑚+𝑛

2
 , 𝑢 =

𝑛−𝑚

2
, and y= (

𝑛−𝑚

2
)𝑥 + (

𝑚+𝑛

2
) 

Thus, it implies that the shifted function for 𝑦 = 𝑢𝑥 + 𝑣 is y= (
𝑛−𝑚

2
)𝑥 + (

𝑚+𝑛

2
) 

In furtherance, using the interval [0,1] accordingly from equation (23), the following terms 

are obtained recursively 

𝑇1(𝑥) = 2𝑥 − 1 

          𝑇2(𝑥) = 8𝑥2 − 8𝑥 + 1 
𝑇3(𝑥) = 32𝑥3 − 48𝑥2 + 18𝑥 − 1 

𝑇4(𝑥) = 128𝑥
4 − 256𝑥3 + 160𝑥2 − 32𝑥 + 1 

The above polynomials are called Shifted Chebyshev polynomials. 

Furthermore, to solve equations (17a) and (17b), the equations are collocated at points 𝑥 =
𝑥𝑖, where 

𝑥𝑖 = 𝑎 +
(𝑏−𝑎)𝑖

𝑁−𝑛+1
 , i = 1,2, … , N − n            (24) 

Hence, (N +n) algebraic equations are obtained in (N + n + 1) unknown constants (𝑎𝑖, 𝑖 =
0,1,2, … , 𝑛; 𝜏𝑘, 𝑘 = 1,2, … , 𝑛). Extra equations are obtained from the given conditions. 

Altogether, (𝑛 + 2𝑁) algebraic equations in (𝑛 + 2𝑁) unknowns are determined. 

Numerical Examples 

The following examples with respect to the exact solutions are verified with the new method 

1. 
𝑑2𝑦

𝑑𝑥2
+
𝑑3/2𝑦

𝑑𝑥3/2
− ∫

𝑦(𝑡)

√𝑥−𝑡
𝑑𝑡 = 2 + 12𝑥2 + 2.256758334𝑥0.5 + 7.221626669𝑥2.5 −

𝑥

0
16

15
𝑥5/2 −

256

315
𝑥9/2 , 𝑦′(0) = 0, 𝑦(0) = 0 

Exact solution : 𝑦(𝑥) = 𝑥4 + 𝑥2 

Solution: 
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The constructed canonical polynomials using equation (16) is 

 ∑ 𝑎𝑖𝑝𝑖(𝑥)
𝑛
𝑖=0 , 𝑛 = 14 

And the perturbation in terms of the shifted Chebyshev polynomials from equation (18, 18a, 

18b) is  

𝐻𝑛(𝑥) = ∑𝜏𝑘𝑇𝑁−𝑘+1(𝑥), 𝑥𝜖[𝑎, 𝑏]

𝑁

𝑘=1

 

produces 

𝐻(𝑥) = 𝜏1 − 392𝜏1𝑥 + 25480𝜏1𝑥
2 − 652288𝜏1𝑥

3 + 8712704𝜏1𝑥
4 − 69701632𝜏1𝑥

5

+ 361181184𝜏1𝑥
6 − 1270087680𝜏1𝑥

7 + 3111714816𝜏1𝑥
8

− 5369233408𝜏1𝑥
9 + 64995983336𝜏1𝑥

10 − 5402263552𝜏1𝑥
11

+ 293612800𝜏1𝑥
12 − 939524096𝜏1𝑥

13 + 134217728𝜏1𝑥
14 − 𝜏2

+ 338𝜏2𝑥 − 18928𝜏2𝑥
2 + 416416𝜏2𝑥

3 − 4759040𝜏2𝑥
4 + 32361472𝜏2𝑥

5

− 141213696𝜏2𝑥
6 + 412778496𝜏2𝑥

7 − 825556992𝜏2𝑥
8

+ 1133117440𝜏2𝑥
9 − 1049624576𝜏2𝑥

10 + 627048448𝜏2𝑥
11

− 218103808𝜏2𝑥
12 + 33554432𝜏2𝑥

13 

where, 

𝜏’s and 𝑎’s are constants to be determined; 

𝑁 = 14 of the shifted Chebyshev polynomial, 

And the fractional derivative for 
𝑑𝛼𝑦

𝑑𝑥𝛼
 is obtained using the Caputo method 

1

𝛤(𝑛 − 𝛼)
∫(𝑥 − 𝑢)𝑛−𝛼−1

𝑑𝑛

𝑑𝑢𝑛
𝑓(𝑢)𝑑𝑢

𝑥

0

 

Here follows the table of results and the graph in comparison with the exact solution. 

Table 1: 

  x           Exact               Approximate       Absolute Error 

  -------------------------------------------------------------------- 

 

  0.10       0.01010000     0.00938269         7.1731e-04  

 

  0.20       0.04160000     0.04021944         1.3806e-03  

 

  0.30       0.09810000     0.09611383         1.9862e-03  

 

  0.40      0.18560000      0.18304166         2.5583e-03  

 

  0.50      0.31250000      0.30938891         3.1111e-03  
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  0.60      0.48960000      0.48594463         3.6554e-03  

 

  0.70      0.73010000      0.72589770         4.2023e-03  

 

  0.80      1.04960000      1.04482976         4.7702e-03  

 

  0.90      1.46610000      1.46068896         5.4110e-03  

 

  1.00      2.00000000      1.99372382         6.2762e-03  

 

Graph 1 

 

 

2. Here, a fourth order fractional integro differential equation is considered 

𝑑4𝑦

𝑑𝑥4
+
𝑑7/2𝑦

𝑑𝑥7/2
+
𝑑3𝑦

𝑑𝑥3
+
1

𝑥2
𝑑2𝑦

𝑑𝑥2
− 𝑥

𝑑𝑦

𝑑𝑥

+ ∫
𝑦(𝑡)

√𝑥 − 𝑡
𝑑𝑡 =

256

315
𝑥9/2 − 5𝑥4 + 27.08110001𝑥0.5 + 24𝑥 + 26

𝑥

0

, 𝑦′(0)

= 0, 𝑦(0) = 0 

Exact solution : 𝑦(𝑥) = 𝑥4 

Solution: 

The constructed canonical polynomials using equation (16) is 

 ∑ 𝑎𝑖𝑝𝑖(𝑥)
𝑛
𝑖=0 , 𝑛 = 13 

              While the perturbation in terms of the shifted Chebyshev polynomials from equation 

(18, 18a, 18b) is  

𝐻𝑛(𝑥) = ∑𝜏𝑘𝑇𝑁−𝑘+1(𝑥), 𝑥𝜖[𝑎, 𝑏]

𝑁

𝑘=1
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produces 

𝐻(𝑥) = −𝜏1 + 338𝜏1𝑥 − 18928𝜏1𝑥
2 + 416416𝜏1𝑥

3 − 4759040𝜏1𝑥
4 + 32361472𝜏1𝑥

5

− 141213696𝜏1𝑥
6 + 412778496𝜏1𝑥

7 − 825556992𝜏1𝑥
8

+ 1133117440𝜏1𝑥
9 − 1049624576𝜏1𝑥

10 + 627048448𝜏1𝑥
11

− 218103808𝜏1𝑥
12 + 33554432𝜏1𝑥

13 + 𝜏2 − 288𝜏2𝑥 + 13728𝜏2𝑥
2

− 256256𝜏2𝑥
3 + 2471040𝜏2𝑥

4 − 14057472𝜏2𝑥
5

+ 50692096𝜏2𝑥
6−120324096𝜏2𝑥

7 + 190513152𝜏2𝑥
8 − 199229440𝜏2𝑥

9

+ 132120576𝜏2𝑥
10 − 50331648𝜏2𝑥

11 + 8388608𝜏2𝑥
12 − 𝜏3 + 242𝜏3𝑥

− 9680𝜏3𝑥
2 + 151008𝜏3𝑥

3 − 1208064𝜏3𝑥
4 + 5637632𝜏3𝑥

5

− 16400384𝜏3𝑥
6 + 30638080𝜏3𝑥

7 − 36765696𝜏3𝑥
8 + 27394048𝜏3𝑥

9

− 11534336𝜏3𝑥
10 + 2097152𝜏3𝑥

11 + 𝜏4 − 200𝜏4𝑥 + 6600𝜏4𝑥
2

− 84480𝜏4𝑥
3 + 549120𝜏4𝑥

4 − 2050048𝜏4𝑥
5 + 4659200𝜏4𝑥

6

− 6553600𝜏4𝑥
7 + 5570560𝜏4𝑥

8 − 2621440𝜏4𝑥
9 + 524288𝜏4𝑥

10 

 

where, 

𝜏’s and 𝑎’s are constants to be determined 

 𝑁 = 13 of the shifted Chebyshev polynomial. 

And the fractional derivative for 
𝑑𝛼𝑦

𝑑𝑥𝛼
 is obtained using the Caputo method 

1

𝛤(𝑛 − 𝛼)
∫(𝑥 − 𝑢)𝑛−𝛼−1

𝑑𝑛

𝑑𝑢𝑛
𝑓(𝑢)𝑑𝑢

𝑥

0

 

Here follows the table of results and the graph in comparison with the exact solution. 

Table 2: 

   x       Exact       Approximate     Absolute Error 

  --------------------------------------------------- 

 

  0.10     0.0001        0.00001010      8.9899e-05  

 

  0.20     0.0016        0.00064144      9.5856e-04  

 

  0.30     0.0081        0.00533917      2.7608e-03  

 

  0.40     0.0256        0.01990924      5.6908e-03  

 

  0.50     0.0625        0.05114524      1.1355e-02  

 

  0.60     0.1296        0.10990912      1.9691e-02  

 

  0.70     0.2401        0.21091470      2.9185e-02  
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  0.80     0.4096        0.36917560      4.0424e-02  

 

  0.90     0.6561        0.60437480      5.1725e-02  

  

  1.00     1.0000        0.94483765      5.5162e-02  

 

Graph 2: 

 

 

CONCLUSION 

The study is focused to reveal the novelty in the significance use of perturbation collocation 

method at solving fractional integro-differential equations. The tasks involves shifting an 

interval agreeing with the Chebyshev polynomials to another interval in order to obtain a set 

of polynomials known as Shifted Chebyshev polynomials. As some fractional mathematical 

problems are investigated to evidently prove the efficacy of the method, satisfactory 

outcomes are yielded in form of empirical tables and graphs, when compared with exact 

solutions. 
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