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ABSTRACT: This paper examines the dynamic response of a non-

uniformly prestressed Bernoulli-Euler beam with clamped-clamped 

boundary conditions, resting on a variable bi-parametric foundation. 

The governing equation is a fourth-order partial differential equation 

with variable and singular coefficients. The primary objective is to 

derive an analytical solution for this class of dynamic problems. To 

achieve this, the Galerkin method is applied, utilizing a series 

representation of the Heaviside function to reduce the equation to a 

system of second-order ordinary differential equations with variable 

coefficients. These reduced equations are further simplified using two 

approaches: (i) the Laplace transform technique, combined with 

convolution theory, to address problems involving moving forces, 

and (ii) finite element analysis, integrated with the Newmark method, 

to solve analytically intractable moving mass problems with 

harmonic behaviour. We begin by solving the moving force problem 

using the finite element method and we validate its accuracy by 

comparing the results with analytical solutions. The numerical 

solution obtained from the finite element analysis demonstrates 

strong agreement with the analytical solution, confirming the 

method’s reliability for tackling more complex moving mass 

problems that lack closed-form solutions. Finally, we generate 

displacement response curves for both moving distributed force and 

moving mass models at different time instances t, providing a 

comprehensive representation of the system's dynamic behaviour.  

KEYWORDS: Bernoulli-Euler beam, Prestressed, Clamped-

Clamped, Newmark method, Bi-parametric foundation. 
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INTRODUCTION 

The dynamic behavior of elastic structures, particularly beams, has been a focus of engineering 

research due to its relevance in bridges, rails, mechanical systems, and aerospace applications. 

A significant body of literature has examined the vibration and response of these systems under 

various loading conditions. Among these, the Bernoulli-Euler beam theory, which assumes that 

plane sections remain plain and normal to the axis during deformation, has been extensively 

used for modeling slender beams subjected to dynamic loads (Inglis, 1934; Timoshenko, 1921; 

Wu et al., 2023). The theory provides a powerful yet simplified framework for studying beam 

deflection and stress distribution. Over time, numerous studies have refined the understanding 

of Bernoulli-Euler beams under different conditions, including non-uniform cross-sections, 

moving loads, and advanced boundary conditions (Stanisic et al., 1968; Sadiku & Leipholz, 

1987; Oni, 1997; Li et al., 2024). 

Dynamic analysis of beams under moving loads presents a unique challenge. Early studies, 

such as Krylov (1905) and Timoshenko (1921), explored simple harmonic loads on beams with 

ideal supports. However, real-world loads are often distributed rather than concentrated and 

may travel across the structure at varying speeds. Furthermore, the dynamic response of beams 

resting on elastic foundations is more complex, requiring models that incorporate both vertical 

stiffness and shear interaction, often referred to as bi-parametric foundations. Research has 

shown that non-uniformities in the beam, such as varying cross-sections or prestress, introduce 

additional complexities, requiring more sophisticated methods of analysis (Stanisic et al., 1968; 

Ahmadian et al., 2006; Adekunle et al., 2017; Huang et al., 2023).  

The Bernoulli-Euler beam with non-uniform prestress is of particular interest because the 

internal stress varies along the beam’s length, complicating the dynamic response. When such 

beams are subjected to clamped-clamped boundary conditions, they experience significant 

restraint at both ends, which further influences the vibrational behavior. This setup makes it 

challenging to derive exact solutions, particularly when resting on variable bi-parametric 

foundations, which account for both stiffness and shear effects along the beam’s span 

(Esmailzadeh & Ghorashi, 1995; Zhao et al., 2023). Recent studies highlight the importance 

of capturing these complexities accurately. 

The governing equation for the dynamic response of a non-uniformly prestressed Bernoulli-

Euler beam resting on a bi-parametric foundation is typically a fourth-order partial differential 

equation with variable and singular coefficients. Analytical solutions to such problems are 

often difficult to obtain, especially when considering distributed moving loads or masses. Early 

studies by Muscolino and Palmeri (2007) focused on harmonic moving loads, while Dogush 

and Eisenberger (2002) extended the analysis to multi-span, non-uniform beams. However, 

these studies mostly employed simplified models of the moving load, often treating it as a point 

force, which overlooks the distributed nature of real loads. The present study addresses this 

gap by considering both distributed forces and moving masses, which more accurately reflect 

practical conditions. 

The primary objective of this research is to derive analytical and numerical solutions for the 

dynamic response of a non-uniformly prestressed Bernoulli-Euler beam with clamped-clamped 

boundary conditions, resting on a variable bi-parametric foundation. To achieve this, the 

governing partial differential equation is reduced to a system of second-order ordinary 

differential equations using the Galerkin method, with a series representation of the Heaviside 
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function to handle the complexity of distributed forces and masses. The following approaches 

are employed for solving the reduced equations: 

1. Laplace transformation combined with convolution theory for problems involving 

moving forces. 

2. Finite element analysis is integrated with the Newmark method for moving mass 

problems, which are analytically challenging due to their harmonic nature. 

This study provides comprehensive analysis by generating displacement response curves for 

both moving force and mass models at various time intervals. The results offer new insights 

into the behavior of non-uniform Bernoulli-Euler beams under realistic loading and boundary 

conditions. Building on previous works such as Adekunle and Folakemi (2017) on Dynamic 

Response of Non-Uniform Elastic Structure Resting on Exponentially Decaying Vlasov 

Foundation under Repeated Rolling Concentrated Loads, this research highlights the 

importance of modeling non-uniform prestress and complex foundation effects in structural 

dynamics. The findings contribute to the broader understanding of dynamic systems, with 

potential applications in bridge design, rail systems, and structural health monitoring. Recent 

advancements in this field, including works by Zhang et al. (2023), Awodola et al., (2024) and 

Kumar and Patel (2024), further emphasize the evolving nature of research on Bernoulli-Euler 

beams under dynamic conditions, showcasing the necessity of refining existing models to 

incorporate contemporary challenges and developments. 

The investigation considers critical aspects related to inertia terms, while also considering the 

beam's elastic properties such as its prestressed and bi-foundation both assumed not constant 

due to the non-uniform cross-section of the beam. It is important to note that damping effects 

are negligible in this scenario. 

Problem Formulation 

This study examines the problem of a variable-magnitude moving distributed load of non-

uniformly prestressed clamped-clamped uniform Bernoulli-Euler beam resting on variable bi-

parametric foundation. The properties of the beam, including its moment of inertia I, mass per 

unit length µ and axial force N, vary along its span length L.  
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Figure 1: Geometry diagram of the non-uniformly prestressed clamped-clamped uniform 

Bernoulli-Euler beam 

Figure 1 above depicts the transverse displacement W(x, t) of the beam as it moves at a constant 

speed. The equation of motion is given as: 

        𝐸𝐼
𝜕4𝑊(𝑥,𝑡)

𝜕𝑥4 − 𝑁(𝑥)
𝜕2

𝜕𝑥2 𝑊(𝑥, 𝑡) +  µ
𝜕2

𝜕𝑡2  𝑊(𝑥, 𝑡) + 𝐾(𝑥)𝑊(𝑥, 𝑡) − 𝐺(𝑥)
𝜕2

𝜕𝑥2 =

𝑃(𝑥, 𝑡),    (1)     

In this problem, the time coordinate is represented by t, while µ denotes the mass per unit length 

of the beam. Additionally, EI refers to the flexural stiffness and x represents the spatial 

coordinate. K(x) represents variable foundation stiffness, G(x) signifies variable shear modulus, 

N(x) indicates variable axial force, and P (x, t) denotes variable magnitude moving distributed 

load acting on the beam. It is noteworthy that in this specific circumstance, the dispersed load 

traversing the beam bears a weight akin to that of the beam itself. Therefore, it must not be 

disregarded as its inertia exerts a considerable influence on determining the dynamical system's 

behavior. Therefore, P (x, t) will take on a specific form based on these factors as follows: 

          𝑃(𝑥, 𝑡) = ∑ ⬚𝑛
𝑖=1 𝑀𝑖𝑔 𝑐𝑜𝑠𝜔𝑡 𝐻(𝑥 − 𝑐𝑖𝑡) [1 −

1

𝑔

𝑑2𝑊(𝑥,𝑡)

𝑑𝑡2 ],   

𝑑2

𝑑𝑡2
=

𝜕2

𝜕𝑡2
+ 2

𝑑𝑓(𝑡)

𝑑𝑡

𝜕2

𝜕𝑥𝜕𝑡
+ (

𝑑𝑓(𝑡)

𝑑𝑡
)

2 𝜕2

𝜕𝑥2
+

𝑑2𝑓(𝑡)

𝑑𝑡2

𝜕

𝜕𝑥
                                    (2) 

where g denotes the acceleration due to gravity, 
𝑑2

𝑑𝑡2
 is a convective acceleration operator, 

𝜕2

𝜕𝑡2
 

is the support beam’s acceleration at the point of contact with the moving mass, 
𝑑𝑓(𝑡)

𝑑𝑡

𝜕2

𝜕𝑥𝑑𝑡
 is 

the well-known Coriolis acceleration,  ( 
𝑑𝑓(𝑡)

𝑑𝑡
)

2 𝜕2

𝜕𝑥2
 is the centripetal acceleration of the moving 

mass and 
𝑑2𝑓(𝑡)

𝑑𝑡2

𝜕

𝜕𝑥
 is the acceleration component in the vertical direction when the moving load 

is not constant. 

Likewise, with a steady velocity of c, the orientation and magnitude traversed by the weight on 

the beam at any particular instance t can be articulated as such. 
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Additionally, it is theorized that the portable load carries a mass represented by M and that the 

time t is limited to the period in which mass M remains on the beam. In simpler terms, 

                                           

The function H [x-f (t)] is the Heaviside function, commonly used in engineering applications 

to measure functions that are binary in nature, i.e., either "on" or "off". Its definition reads as 

follows: 

           

For instance, consider the variable axial force denoted by N(x), as defined in Adekunle et al. 

(2017), variable foundation stiffness and variable shear modulus, as defined in Adekunle and 

Folakemi (2017). 

       𝑁(𝑥) = 𝑁0(1 + 𝑠𝑖𝑛
𝜋𝑥

𝐿
),  

  𝐾(𝑥) = 𝐾0(4𝑥 − 3𝑥2 +  𝑥3),  

𝐺(𝑥) = 𝐺0(12 − 13𝑥 +  6𝑥2 −  𝑥3)                (6) 

where N0, K0, and G0 are constant axial force, constant foundation stiffness and constant shear 

modulus respectively, for the corresponding uniform beam. By substituting Equations (2), (3) 

and (6) into Equation (1) and conducting necessary simplification and rearrangement, we 

obtain the desired result as follows: 

 𝐸𝐼
𝜕4𝑊(𝑥,𝑡)

𝜕𝑥4 − 𝑁0(1 + 𝑠𝑖𝑛
𝜋𝑥

𝐿
)

𝜕2𝑊(𝑥,𝑡)

𝜕𝑥2 +  𝜇
𝜕2𝑊(𝑥,𝑡)

𝜕𝑡2 + 𝐾0(4𝑥 − 3𝑥2 + 𝑥3)𝑊(𝑥, 𝑡) 

−𝐺0(12 − 13𝑥 + 6𝑥2 −  𝑥3)
𝜕2𝑊(𝑥, 𝑡)

𝜕𝑥2
 +𝑐𝑜𝑠 𝑐𝑜𝑠 𝜔𝑡  

[
𝜕2

𝜕𝑡2
+ 2𝐶𝑖

𝜕2

𝜕𝑥𝜕𝑡
+  𝑐𝑖

2
𝜕2

𝜕𝑥2
] 𝑊(𝑥, 𝑡) =𝑐𝑜𝑠 𝑐𝑜𝑠 𝜔𝑡               (7) 

The boundary conditions of the problem are deemed arbitrary, thereby allowing for the 

adoption of any form of classical boundary conditions. In contrast, without sacrificing 

generality, the initial conditions are presented as follows 

                                     

Equation (7) constitutes the fundamental equation in the dynamic problem. 

http://eq2.png/
http://eq3.png/
http://eq6.png/
http://eq1.png/
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Solution Procedure 

Partial Differential Equation (7) exhibits non-homogeneous variable coefficients. Separation 

of variables method seems unfeasible, given the complexity in obtaining separate equations 

with functions dependent on a single variable. Consequently, we resort to a modified rendition 

of the approximate approach that is most fitting for addressing diverse concerns associated with 

structural dynamics, popularly referred to as Galerkin's Method. To reduce the fourth order 

partial differential equation into a sequence of second order ordinary differential equations, we 

employ Galerkin's method, as described by Oni and Awodola (2003, 2010). This approach 

leads us towards finding solutions in the form: 

𝑊(𝑥, 𝑡) = ∑ 𝑌𝑚(𝑡)𝑉𝑚(𝑥)

𝑛

𝑚=1

                                                      (9) 

The kernel function Vm(x) is thoughtfully selected for Galerkin’s method in Equation (9) to 

ensure that the specified boundary conditions are met. It should be noted that our analysis 

assumes general boundary conditions at x = 0 and x = L for the beam in question. Therefore, 

we must carefully choose a suitable set of functions to represent the beam shapes in order to 

obtain the mth normal mode of vibration 

𝑉𝑚(𝑥) = 𝑠𝑖𝑛 𝑠𝑖𝑛 
𝜆𝑚𝑥

𝐿
 +  𝐴𝑚 𝑐𝑜𝑠 𝑐𝑜𝑠 

𝜆𝑚𝑥

𝐿
  +  𝐵𝑚 𝑠𝑖𝑛ℎ 𝑠𝑖𝑛ℎ 

𝜆𝑚𝑥

𝐿
  + 𝐶𝑚

𝑐𝑜𝑠ℎ 𝑐𝑜𝑠ℎ 
𝜆𝑚𝑥

𝐿
                 (10) 

is chosen such that the boundary conditions are satisfied. The kernel is chosen as: 

        𝑉𝑘(𝑥) = 𝑠𝑖𝑛 𝑠𝑖𝑛 
𝜆𝑘𝑥

𝐿
 + 𝐴𝑘 𝑐𝑜𝑠 𝑐𝑜𝑠 

𝜆𝑘𝑥

𝐿
  +  𝐵𝑘 𝑠𝑖𝑛ℎ 𝑠𝑖𝑛ℎ 

𝜆𝑘𝑥

𝐿
  +  𝐶𝑘

𝑐𝑜𝑠ℎ 𝑐𝑜𝑠ℎ 
𝜆𝑘𝑥

𝐿
                 (11) 

In Equations (10) and (11), λm and λk respectively denote the mode frequency. The constants 

Am,  Bm, Cm,  Ak,  Bk  and Ck are determined by substituting Equations (6) and (7) into the 

relevant boundary condition. Consequently, upon substitution of Equation (9) into Equation 

(7), we obtain: 

∑ ⬚𝑛
𝑚=1 {[𝑉𝑚(𝑥)𝑉𝑘(𝑥) ]𝑌𝑚(𝑡)  +

 £𝐼

𝜇
[𝑉𝑚

𝐼𝑉(𝑥)𝑉𝑘(𝑥)]𝑌𝑚 −
𝑁0𝜋

𝜇𝐿
[

𝑐𝑜𝑠𝑐𝑜𝑠 𝜋𝑥 

𝐿
𝑉𝑚

𝐼 (𝑥)𝑉𝑘(𝑥)]𝑌𝑚(𝑡) −

𝑁0

𝜇
[𝑉𝑚

𝐼𝐼(𝑥)𝑉𝑘(𝑥)]𝑌𝑚(𝑡) −
𝑁0

𝜇
[

𝑠𝑖𝑛𝑠𝑖𝑛 𝜋𝑥 

𝐿
𝑉𝑚

𝐼𝐼(𝑥)𝑉𝑘(𝑥)]𝑌𝑚(𝑡) +
𝐾0

𝜇
[4𝑥𝑉𝑚(𝑥)𝑉𝑘(𝑥)]𝑌𝑚(𝑡) −

𝐾0

𝜇
[3𝑥2𝑉𝑚(𝑥)𝑉𝑘(𝑥)]𝑌𝑚(𝑡) +

𝐾0

𝜇
[𝑥3𝑉𝑚(𝑥)𝑉𝑘(𝑥)]𝑌𝑚(𝑡) +

𝐺0

𝜇
[12𝑉𝑚

𝐼𝐼(𝑥)𝑉𝑘(𝑥)]𝑌𝑚(𝑡) +
𝐺0

𝜇
[13𝑥𝑉𝑚

𝐼𝐼(𝑥)𝑉𝑘(𝑥)]𝑌𝑚(𝑡) −
𝐺0

𝜇
[6𝑥2𝑉𝑚

𝐼𝐼(𝑥)𝑉𝑘(𝑥)]𝑌𝑚(𝑡) +
𝐺0

𝜇
[𝑥3𝑉𝑚

𝐼𝐼(𝑥)𝑉𝑘(𝑥)]𝑌𝑚(𝑡) +
𝑀

𝜇
[

𝑐𝑜𝑠 𝑐𝑜𝑠 𝜔𝑡𝐻(𝑥 − 𝑐𝑡)𝑉𝑚(𝑥)𝑉𝑘(𝑥)]𝑌𝑚(𝑡)  +
𝑀

𝜇
(𝑐𝑜𝑠 𝑐𝑜𝑠 𝜔𝑡𝐻(𝑥 − 𝑐𝑡)𝑉𝑚(𝑥)𝑉𝑘(𝑥))𝑌𝑚(𝑡) +

2𝐶(𝑐𝑜𝑠 𝑐𝑜𝑠 𝜔𝑡𝐻(𝑥 − 𝑐𝑡)𝑉𝑚(𝑥)𝑉𝑘(𝑥))𝑌𝑚(𝑡) + 𝑐2(𝑐𝑜𝑠 𝑐𝑜𝑠 𝜔𝑡𝐻(𝑥 −

𝑐𝑡)𝑉𝑚(𝑥)𝑉𝑘(𝑥))𝑌𝑚(𝑡)} −
𝑀

𝜇
𝑔 𝑐𝑜𝑠 𝑐𝑜𝑠 𝜔𝑡𝐻(𝑥 − 𝑐𝑡)𝑉𝑘(𝑥)     = 0  

 

http://eq9.png/
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To derive an expression for Ym(t), let us examine a mass M that moves uniformly at velocity c 

along the x-coordinate. The solution for any number of moving masses may be obtained by 

superimposing the individual solutions, as the governing equation is linear. In order to 

determine the expression for a single mass M1, it is necessary that the left-hand side of Equation 

(12) be orthogonal to function Uk(x). Therefore, utilizing Equations (10) and (11) in (12) 

produces: 

 

where 

 

Using the property of Heaviside function, it can be expressed in series form given by Adekunle 

et al. (2017), i.e., 

 

Thus, in view of (14)–(20) and (21), it can be shown that: 

http://eq12.png/
http://eq10.png/
http://eq11.png/
http://eq12.png/
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where 

                                                               

Equation (22) stands as the fundamental governing equation for the dynamic problem. This 

coupled, non-homogeneous second-order ordinary differential equation applies to all variants 

of classical boundary conditions. Consequently, two distinct cases emerge from Equation (22): 

the moving force and moving mass problems. 

Non-uniformly Prestressed Bernoulli-Euler Beam Traversed by Moving Distributed 

Force for Clamped-Clamped End Condition 

In this segment, we derive an approximate model for the differential equation that characterizes 

the reaction of the elastic structure. This is achieved by disregarding inertia terms, specifically 

setting ε0 to zero. Furthermore, we will focus solely on the clamped-clamped end condition as 

our example. Under these circumstances, both displacement and bending moment are 

negligible and vanish entirely. 

                       

and hence for normal modes 

                           

which implies 

                             

  

http://eq22.png/
http://eq22.png/
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It is easily shown that 

 ,            (27) 

and 

,                                      (28) 

substituting Equations (24)–(28) into Equation (22), yields 

   �̈�𝑚(𝑡) + 𝛿𝑓
2𝑌𝑚(𝑡) = 𝜌0 𝑐𝑜𝑠 𝑐𝑜𝑠 𝑤𝑡 [− 𝑐𝑜𝑠 𝑐𝑜𝑠 𝜆𝑘 + 𝐴𝑘 𝑠𝑖𝑛 𝑠𝑖𝑛 𝜆𝑘 + 𝐵𝑘 𝑐𝑜𝑠 𝑐𝑜𝑠 ℎ𝜆𝑘 + 𝐶𝑘

𝑠𝑖𝑛 𝑠𝑖𝑛 ℎ𝜆𝑘 +𝑐𝑜𝑠 𝑐𝑜𝑠 𝜃𝑐𝑡 − 𝐴𝑘 𝑠𝑖𝑛 𝑠𝑖𝑛 𝜃𝑐𝑡 − 𝐵𝑘 𝑐𝑜𝑠 𝑐𝑜𝑠 ℎ𝜃𝑐𝑡 − 𝐶𝑘 𝑠𝑖𝑛 𝑠𝑖𝑛 ℎ𝜃𝑐𝑡] ,  (29) 

where 

                                 𝛿𝑓
2  =

𝑃0(𝑚,𝑘)

𝐵0(𝑚,𝑘)
;     𝜌0 =

𝑀𝑖𝑔𝐿

𝜇𝜆𝑘𝐵0(𝑚,𝑘)
;        𝜃𝑐 =

𝜆𝑘𝑐

𝐿
,                             (30) 

Thus, by applying the Laplace transform technique and convolution theory with the given 

initial conditions (8), we can obtain a solution to Equation (29) as follows: 

 

𝑊(𝑥, 𝑡) =  
𝜌0𝑐𝑜𝑠𝑤𝑡

𝛿𝑓
2(𝜃𝑐

4−𝛿𝑓
4)

{𝛽𝑛(𝑚, 𝑡)[(1 −  𝑐𝑜𝑠𝛿𝑓𝑡)(𝜃𝑐
4 − 𝛿𝑓

4)] −  𝛿𝑓
2(𝑐𝑜𝑠𝜃𝑐𝑡 −  𝑐𝑜𝑠𝛿𝑓𝑡) −

 𝐴𝑘𝛿𝑓(𝜃𝑐𝑠𝑖𝑛𝛿𝑓𝑡 −  𝛿𝑓𝑠𝑖𝑛𝜃𝑐𝑡) −  (𝜃𝑐
2 −  𝛿𝑓

2)[𝐵𝑘𝛿𝑓
2(𝑐𝑜𝑠ℎ𝜃𝑐𝑡 −  𝑐𝑜𝑠𝛿𝑓𝑡) +

𝐶𝑘𝛿𝑓(𝛿𝑓𝑠𝑖𝑛ℎ𝜃𝑐𝑡 − 𝜃𝑐𝑠𝑖𝑛𝛿𝑓𝑡)]} × [𝑆𝑖𝑛
𝜆𝑘𝑥

𝐿
+ 𝐴𝑘𝑐𝑜𝑠

𝜆𝑘𝑥

𝐿
+  𝐵𝑘𝑆𝑖𝑛ℎ

𝜆𝑘𝑥

𝐿
+  𝐶𝑘𝑐𝑜𝑠ℎ

𝜆𝑘𝑥

𝐿
].  (31) 

Equation (31) depicts the transverse-displacement reaction of a non-uniformly prestressed 

clamped-clamped Bernoulli-Euler beam, which is subjected to a variable-magnitude moving 

distributed force and rests on a variable bi-parametric foundation. 

Non-uniform Bernoulli-Euler Beam Traversed by Moving Distributed Mass for 

Clamped-Clamped End Condition 

In this section, we endeavor to determine a solution for Equation (22) without disregarding any 

of the terms in the coupled differential equation. It is evident that conventional methods cannot 

yield an exact solution for this equation. Even Struble's frequently employed technique 

(Struble, 1962) falters due to the varying magnitude of the moving load. Henceforth, we resort 

to utilizing finite element method (FEM) for modeling the structure and subsequently 

implement Newmark numerical integration method to solve the resultant semi-discrete time-

dependent equation and obtain our desired responses. 
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Finite Element Method (FEM) 

The finite element techniques assume that the unknown transverse deflection of the non-

uniformly prestressed beam W(x, t) can be represented approximately by a set of piecewise 

continuous functions which are defined over a finite number of sub-regions called elements 

and composed of the numerical values of the unknown deflection within the region. Thus, the 

first step involved in the technique consists of dividing the special solution domain of the non-

uniformly prestressed beam, which happens to be the length of the beam in this case, into 

several sub-domain known as finite elements. These elements are joined to each other at 

selected points called nodes. Subsequently, the weak or variational form corresponding to 

governing Equation (1) is constructed thus:     

Let us consider a customary segment of dimension L, with its domain λe = (0, L). By inserting 

Equations (2) and (3) into Equations (1), we have: 

         
𝜕2

𝜕𝑥2 (𝐸𝐼
𝜕2𝑊(𝑥,𝑡)

𝜕𝑥2 ) + 𝜇
𝜕2𝑊(𝑥,𝑡)

𝜕𝑡2 − 𝑁(𝑥)
𝜕2𝑊(𝑥,𝑡)

𝜕𝑥2 + 𝐾(𝑥)𝑊(𝑥, 𝑡) − 𝐺(𝑥)
𝜕2𝑊(𝑥,𝑡)

𝜕𝑥2 +

(𝑐𝑜𝑠 𝑐𝑜𝑠 𝑤𝑡 )𝑀𝐻(𝑥 − 𝑐𝑡) [
𝜕2𝑊(𝑥,𝑡)

𝜕𝑡2 +
2𝐶𝜕2𝑊(𝑥,𝑡)

𝜕𝑥𝜕𝑡
+

𝐶2𝜕2𝑊(𝑥,𝑡)

𝜕𝑥2 ] = 𝑀𝑔 𝑐𝑜𝑠 𝑐𝑜𝑠 (𝑤𝑡) 𝐻(𝑥 − 𝑐𝑡)            

(32) 

To address the resolution of Equation (32), we will examine a mass M that moves uniformly at 

a velocity c along the x-coordinate. As the governing equation is linear, finding solutions for 

any number of moving masses can be achieved through superposition of individual solutions. 

For the single mass M1, let Galerkin's weight function V(x) be utilized. By multiplying Equation 

(32) with this weight function and integrating over the domain λe, simplification and 

rearrangement lead to its solution. 

∫ 𝐸𝐼
𝜕2𝑊(𝑥,𝑡)

𝜕𝑥2

𝜕2𝑉(𝑥)

𝜕𝑥2

𝐿𝑙

0
𝑑𝑥 + ∫ 𝜇

𝜕2𝑊(𝑥,𝑡)

𝜕𝑡2 𝑉(𝑥)
𝐿𝑙

0
𝑑𝑥 − ∫ (𝑁(𝑥) + 𝐺(𝑥))

𝐿𝑙

0

𝜕2𝑊(𝑥,𝑡)

𝜕𝑥2 𝑉(𝑥)𝑑𝑥 +

∫ 𝐾(𝑥)𝑊(𝑥, 𝑡)𝑉(𝑥)
𝐿𝑙

0
𝑑𝑥 − 𝑀𝑔 𝑐𝑜𝑠 𝑐𝑜𝑠 (𝑤𝑡) ∫ 𝑉(𝑥)𝐻(𝑥 − 𝑐𝑡)

𝐿𝑙

0
𝑑𝑥 + 𝑀

𝑐𝑜𝑠 𝑐𝑜𝑠 (𝑤𝑡) ∫
𝜕2𝑊(𝑥,𝑡)

𝜕𝑡2 𝑉(𝑥)𝐻(𝑥 − 𝑐𝑡)𝑑𝑥
𝐿𝑙

0
+ 2𝑀𝑐 𝑐𝑜𝑠 𝑐𝑜𝑠 (𝑤𝑡) ∫

𝜕2𝑊(𝑥,𝑡)

𝛿𝑥𝛿𝑡
𝑉(𝑥)𝐻(𝑥 −

𝐿𝑙

0

𝑐𝑡)𝑑𝑥 + 𝑀𝑐2 𝑐𝑜𝑠 𝑐𝑜𝑠 (𝑤𝑡) ∫
𝜕2𝑊(𝑥,𝑡)

𝜕𝑡2 𝑉(𝑥)𝐻(𝑥 − 𝑐𝑡)𝑑𝑥 − 𝑉(𝐿𝑙)𝑄3
𝑙 − 𝑉(0)𝑄1

𝑙 +
𝐿𝑙

0
𝜕𝑉

𝜕𝑥
∕𝑥=𝐿𝑙 𝑄4

𝑙 +
𝜕𝑉

𝜕𝑥
∕𝑥=0 𝑄2

𝑙 = 0                                                   

(33) 

 

where 

𝑄1 = [
𝜕

𝜕𝑥
(𝐸𝐼

𝜕2𝑊(𝑥,𝑡)

𝜕𝑥2 )] ∕𝑥=0;  𝑄2
𝑙 = 𝐸𝐼

𝜕2𝑊(𝑥,𝑡)

𝜕𝑥2 ∕𝑥=0 𝑄3 = −[
𝜕

𝜕𝑥
(𝐸𝐼

𝜕2𝑊(𝑥,𝑡)

𝜕𝑥2 )] ∕𝑥= 𝐿𝑙;      𝑄4
𝑙 =

𝐸𝐼
𝜕2𝑊(𝑥,𝑡)

𝜕𝑥2 ∕𝑥= 𝐿𝑙              (34) 

Additionally, it can be easily demonstrated that 

                                          ∫ 𝑓(𝑥)𝐻(𝑥 − 𝑐𝑡)
𝐿𝑙

0
𝑑𝑥 = ∫ 𝑓(𝑥)

𝐿𝑙

0
𝑑𝑥                                    (35) 
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Thus, Equation (33) becomes 

 ∫ 𝐸𝐼
𝜕2𝑊(𝑥,𝑡)

𝜕𝑥2

𝜕2𝑊(𝑥,𝑡)

𝜕𝑥2

𝐿𝑙

0
𝑑𝑥 + ∫ 𝜇

𝜕2𝑊(𝑥,𝑡)

𝜕𝑡2 𝑉(𝑥)
𝐿𝑙

0
𝑑𝑥 − ∫ (𝑁(𝑥) + 𝐺(𝑥))

𝐿𝑙

0

𝜕2𝑊(𝑥,𝑡)

𝜕𝑥2 𝑉(𝑥)𝑑𝑥 +

∫ 𝐾(𝑥)
𝐿𝑙

0
𝑊(𝑥, 𝑡)𝑉(𝑥)𝑑𝑥 − 𝑀𝑔 𝑐𝑜𝑠 𝑐𝑜𝑠 (𝑤𝑡) ∫ 𝑉(𝑥)

𝐿𝑙

0
𝑑𝑥 + 𝑀

𝑐𝑜𝑠 𝑐𝑜𝑠 (𝑤𝑡) ∫
𝜕2𝑊(𝑥,𝑡)

𝜕𝑡2
𝑉(𝑥)

𝐿𝑙

0
𝑑𝑥 + 2𝑀𝑐 𝑐𝑜𝑠 𝑐𝑜𝑠 (𝑤𝑡) ∫

𝜕2𝑊(𝑥,𝑡)

𝛿𝑥𝛿𝑡
𝑉(𝑥)

𝐿𝑙

0
𝑑𝑥 + 𝑀𝑐2

𝑐𝑜𝑠 𝑐𝑜𝑠 (𝑤𝑡) ∫
𝜕2𝑊(𝑥,𝑡)

𝜕𝑥2 𝑉(𝑥)
𝐿𝑙

0
𝑑𝑥 − 𝑉(𝐿𝑙)𝑄3

𝑙 − 𝑉(0)𝑄1
𝑙 +

𝜕𝑉

𝜕𝑥
∕𝑥=𝐿𝑙 𝑄4

𝑙 +
𝜕𝑉

𝜕𝑥
∕𝑥=0 𝑄2

𝑙 = 0          

          

 (36) 

The weak form of the variable magnitude moving distributed masses of non-uniformly 

prestressed beams resting on variable bi-parametric foundation, can be found in Equation (36). 

In order to obtain an approximate solution for the element being analyzed and develop its 

corresponding shape function, we assume that the unknown deflection W(x, t) can be expressed 

approximately. 

𝑊(𝑥, 𝑡) ≈ 𝑊𝑛(𝑥, 𝑡)  = 𝐻1(𝑥)𝑊1(𝑡) + 𝐻2(𝑥)𝑊2(𝑡) + 𝐻3(𝑥)𝑊3(𝑡) + 𝐻4(𝑥)𝑊4(𝑡)  

= ∑ 𝐻𝑘(𝑥)𝑉𝑘(𝑡)

4

𝑘=1

= {𝐻}{𝑉(𝑡)},                𝑗 = 1,2,3,4                 (37) 

where Hj(x) represents the Hermite-cubic shape functions, Vk(t) represents the modal deflection 

functions and H is a row vector defined as: 

                                              

Utilizing the techniques outlined by Junkins and Kim (1993) for creating Hermite-cubic 

interpolation functions results in 

        

Substituting Equations (37)–(39) into the weak form (36), where x denotes the spatial 

coordinate, and conducting some simplification and rearrangement yields: 

                           

The Matrix Equation (40) functions as the primary governing equation that delineates the 

conduct of a conventional finite element within a non-uniformly prestressed beam under the 

influence of a harmonic moving load. The symbol [Ke] denotes the stiffness matrix of said 

element, while [Me] represents its mass matrix. Furthermore, [Ce] signifies its centripetal 

matrix, { f e} serves as an indicator for the force vector and {Qe} reflects upon the boundary 

term vector of said element.     

The subsequent phase entails the assembly of the equations. Wu (2005) and Irvine (2010) have 

extensively discussed the process of amalgamating various matrices and vectors for multiple 
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beam elements that form a mesh. This culminates in an assembled governing equation of 

motion, which accurately describes the dynamic behavior exhibited by problems involving 

moving loads with Pasternak foundation. 

                       

where [K], [M] and [C] are the assembled (global or overall) stiffness, mass, centripetal and 

load vector. 

To obtain a comprehensive and unique solution (41), it is crucial to apply the designated 

boundary conditions on both the deflection/slopes and shear force/bending moments. 

Ultimately, in a free vibration system without the centripetal matrix, (41) transforms into a 

harmonic form. 

                                                    

The natural frequency is represented by ω2 while the system's corresponding mode shape is 

denoted by V(t). Several techniques can be employed to determine both the eigenvalue ω2 and 

its corresponding V(t). The dynamic response of a non-uniform beam subjected to a partially 

distributed moving load can be derived through direct solution of equation (41) using the 

Newmark method. 

 

COMMENTS ON THE CLOSED FORM SOLUTIONS 

In principle, the deviations of a non-uniformly prestressed Bernoulli-Euler beam possess the 

capability to surpass acceptable thresholds. This occurrence signifies that the beam is 

undergoing resonance. The pace at which an external load triggers such resonance in the system 

is denoted as its critical velocity. As illustrated by (31), when subjected to a moving distributed 

force and bolstered by a Pasternak foundation with clamped-clamped supports, the said beam 

inevitably attains these resonant states. 

                              𝜃𝑐 = 𝛿𝑓;             𝛿𝑓 =
𝜆𝑘𝑐

𝐿
                                                              (43) 

Equation. (30) shows that the dynamic system will attain the state of resonance whenever 

velocity is 

                              𝑐 =
𝐿𝜃𝑐

𝑚𝜋
                                                                            (44) 
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ANALYSIS OF RESULT AND DISCUSSION 

To illustrate the presented analysis, a non-uniform beam with a length of 5 meters is examined. 

The load velocity is set at 50 meters per second, while the young modulus amounts to 2.10924 

x 109 Newtons per square meter and the moment of inertia measures at 0.00287698 cubic 

meters to the fourth power. The value of π is equal to approximately 22 divided by seven, and 

the mass per unit length of the beam equals 2758.291 kilograms per cubic meter; furthermore, 

the ratio between load mass and beam mass stands at 0.25. 

The transverse deflection of this beam can be calculated for various values of axial force N, 

foundation stiffness K as well as shear modulus G, which are all subject to variation in this 

study: N varies between (0 - 4.5 x 107), K ranges from four times ten raised to three and nine 

times ten raised to eight units (4 x 103 - 4 x 109), whereas G varies from four times ten raised 

to three up until nine times ten raised to eight newtons per cubic meter cubed (N/m3).  

These calculations result in several graphs displayed across Figures Two through Seven that 

showcase our findings on these variables' impact on transverse deflection over time. 

 

Figure 2: Transverse displacement of the non-uniform prestressed clamped-clamped 

Bernoulli-Euler beam for various values of axial force No and fixed values of Ko(4000) and 

Go(4000) that traversed by moving distributed force. 
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Figure 3: Transverse displacement of the non-uniform clamped-clamped Bernoulli-Euler 

beam for various values of axial force N and fixed values of K(4000) and G(4000) that 

traversed by moving distributed mass. 

 

Figure 4: Transverse displacement of the non-uniform clamped-clamped Bernoulli-Euler 

beam for various values of foundation stiffness K and fixed values of G(4000) and N(4000) 

that traversed by moving distributed force. 
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Figure 5: Transverse displacement of the non-uniform clamped-clamped Bernoulli-Euler 

beam for various values of foundation stiffness K and fixed values of G(4000) and N(4000) 

that traversed by moving distributed mass. 

 

Figure 6: Transverse displacement of the non-uniform clamped-clamped Bernoulli-Euler 

beam for various values of shear modulus G and fixed values of N(4000) and K(4000) that 

traversed by moving distributed force. 
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Figure 7: Transverse displacement of the non-uniform clamped-clamped Bernoulli-Euler 

beam for various values of shear modulus G and fixed values of N(4000) and K(4000) that 

traversed by moving distributed mass. 

Figures 2–4 depict the transverse displacement responses of a non-uniform clamped-clamped 

Bernoulli-Euler beam subjected to distributed moving load traveling at constant velocity under 

the influence of moving distributed force. The figures display various values of (i) axial force 

N while other parameters remain fixed, (ii) foundation stiffness K while other parameters 

remain fixed, and (iii) shear modulus G while other parameters remain fixed. It is observed that 

as N, K, and G increase, there is a decrease in the deflection of the beam. Similar outcomes are 

achieved when the beam encounters moving mass, as shown in Figures 5–7. 

 

 

 

 

 

 

 

 

Figure 8: Comparison of the transverse displacement of the moving distributed mass and 

moving distributed force for the non-uniform clamped-clamped Bernoulli-Euler beam. 
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Figure 9: Comparison of the transverse displacement of the exact and numerical solutions for 

the non-uniformly prestressed clamped-clamped Bernoulli-Euler beam. 

 

Figure 10: Comparison of the transverse displacement of the moving distributed mass and 

moving distributed with SEM force for the non-uniformly prestressed clamped-clamped 

Bernoulli-Euler beam. 

Various comparisons of the lateral displacements are depicted in Figures 8–10. To authenticate 

the precision of the current approach, we compare the vibration caused by moving distributed 

masses with varying magnitudes on a non-uniform Bernoulli-Euler beam that is clamped-

clamped and rests on a Pasternak elastic foundation, as obtained through our method and 

frequency-domain spectral element method (SEM) at two different velocities illustrated in 

Figure 10. The findings indicate that dynamic responses generated through our procedure are 

nearly identical to those acquired via SEM.. 
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CONCLUSION 

The inquiry pertains to the oscillation of distributed masses that fluctuate in intensity and travel 

beneath a clamped-clamped non-uniformly prestressed Bernoulli-Euler beam supported by bi-

parametric elastic foundation, which is governed by fourth-order partial differential equations 

with variable and singular coefficients. The principal aim is to derive a definitive solution for 

this dynamic predicament, particularly when addressing the non-uniformly prestressed 

Bernoulli-Euler beam that varies throughout its length. The complexity of the governing 

equation renders finite integral transform unsuitable for its resolution. As a result, Galerkin's 

method is commonly employed to transform the equation with singular and variable 

coefficients. The resulting equations from Galerkin are then solved using (i) Laplace 

transformation and convolution theory to obtain analytical solutions for one-dimensional 

dynamic problems caused by moving forces, and (ii) finite element analysis in conjunction with 

Newmark method for cases involving moving masses that cannot be analytically solved due to 

their harmonic nature. To ascertain the precision of the approach utilized in (i), Fig. 9 illustrates 

dynamic responses attained through finite element method (FEM) for a clamped-clamped non-

uniform Bernoulli-Euler beam, while those obtained from frequency-domain spectral element 

method (SEM) are displayed in Fig. 10. A thorough analysis is performed on the acquired 

analytical solutions to identify resonance conditions pertinent to the problems at hand. This 

study features multiple intriguing aspects, as revealed by numerical analysis: 

1. As the axial force values increase, the displacement amplitude of a non-uniformly 

prestressed Bernoulli-Euler beam that is clamped at both ends and subjected to a 

uniformly distributed force decreases. This finding remains valid for fixed shear modulus 

G and foundation stiffness K. The same conclusions and evaluations are derived in the 

presence of a moving mass. 

2. In a dynamic setting, the displacement of a non-uniformly prestressed Bernoulli-Euler 

beam clamped at both ends and subjected to a moving distributed force decreases as the 

stiffness of its bi-parametric foundation increases. This correlation holds for constant 

axial force N and shear modulus G. Comparable results and analyses are demonstrated 

when dealing with moving mass scenarios. 

3. The response amplitude of the clamped-clamped non-uniformly prestressed Bernoulli-

Euler beam, under a constant axial force N and foundation stiffness K, decreases as the 

shear modulus G is increased when subjected to a moving force. Such results also apply 

in cases involving moving masses. This research presents valuable techniques for 

resolving dynamic problems related to clamped-clamped non-uniformly prestressed 

Bernoulli-Euler beams with variable magnitude distributed masses. 
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