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ABSTRACT: This paper introduces a new lifetime probability 

distribution called the Truncated Pseudo-Lindley-Poisson 

Distribution (TPLPD), which generalises the Pseudo-Lindley 

Distribution and the Poisson distribution. The distribution is a 

flexible distribution used to model count data with varying degrees 

of dispersion.  This study also investigates the performance of 

Maximum Likelihood Estimation (MLE) for estimating the 

parameters of the Truncated Pseudo Lindley Poisson Distribution 

(TPLPD) through a simulation-based approach. The variance of 

MLE estimates is assessed under various sample sizes and 

parameter combinations. The results of the simulation study 

reveal that the variance of MLE estimates decreases as the sample 

size increases and that the choice of parameter combinations 

significantly affects the variance.    

KEYWORDS: Truncated Pseudo-Lindley- Poisson distribution, 

Maximum Likelihood Estimation, Variance, Simulation Study. 
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INTRODUCTION 

The Pseudo-Lindley Poisson Distribution (PLPD) has various applications in biology in 

modelling gene expression, species abundance, or count data in ecological studies. Quality 

Control is used to monitor and control product quality in manufacturing processes. Reliability 

engineering in modelling failure times, reliability, and maintainability of complex systems.   

Data has a non-negative integer value (count data). Data requires a flexible distribution with 

both Poisson and Lindley characteristics. The Truncated Pseudo-Lindley Poisson Distribution 

(TPLPD), as a truncated version of the Pseudo-Lindley Poisson Distribution, offers a more 

flexible and realistic approach to modelling count data with upper limits or censoring. A study 

on the general mathematical properties of the Lindley distribution was offered by Ghitany and 

Nadarajah (2008), who also applied it to the area of reliability analysis. Since the work of 

Ghitany and Nadaraja (2008), various generalisations, extensions and modifications of the 

Lindley distribution have been carried out to suit one or two purposes of real life situations. 

Indeed, the Lindley distribution has become one of the most widely applied distributions in 

lifetime analyses. However, due to the fact that the Lindley distribution possesses just a single 

parameter, the distribution is highly inadequate in modelling the random behaviour of many 

real life data. Nedjar and Zeghdoudi (2017) offered a two-parameter Lindley distribution and 

called it the Pseudo-Lindley distribution to increase the flexibility of the Lindley distribution. 

More parameters in a statistical distribution imply that the distribution can cover a wide range 

of shapes (Burr, 1942). This enables various data types to be accommodated within the fitting 

space of a well-parameterized model.  In the literature, parameter(s) are added to a given 

distribution using several approaches. It can be through exponentiation, transformation or by 

combining two or more probability distributions to form a new one, in which case the collective 

contribution of each combined distribution makes the new model have more parameters and, 

in turn, exhibit the behaviour of each of the individual models as well as the combined 

properties of the generalised model. This is a good realisation. The new distribution formed by 

the addition of parameters is usually termed “generalised distribution”, “compounded 

distribution”, “extended distribution”, or “modified distribution” (Mudholkar & 

Srivastava,1998; Cordeiro, Ortega & Cunha, 2013; Adamidis & Loukas, 1998). For example, 

Azzalini A. 1985, introduced the skew-normal distribution by introducing an extra parameter 

to the normal distribution to add more flexibility to the normal distribution. 

  

METHODS 

Zeghdoudi and   Nedjar (2016) introduced a new variant of the Lindley distribution called the 

Pseudo-Lindley (PL) distribution with cumulative distribution function (cdf) and probability 

density function (pdf) given respectively by 

𝐺𝑃𝐿(𝑥) = 1 −
(𝜃 + 𝛽𝑥)𝑒−𝛽𝑥

𝜃
  ,   𝑔𝑃𝐿(𝑥) =

𝛽(𝜃 − 1 + 𝛽𝑥)𝑒−𝛽𝑥

𝜃
, 𝑥 > 0, 𝛽 > 0, 𝜃 ≥ 1,   

In this work, a new compound probability distribution is defined by compounding the PL 

distribution and the truncated Poisson distribution. The truncated Poisson distribution has the 

probability mass function (pmf) given by𝑃(𝑁 = 𝑛) =
𝜆𝑛

𝑛!(𝑒𝜆−1)
   ;            𝑛 = 1,2,3 … … , 𝜆 >

0,   where  𝜆 is the rate parameter (Noack, 1950). The new compound probability distribution 

is called the new Truncated Pseudo-Lindley Poisson (TPLP) distribution. 
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Construction of the Pseudo-Lindley Poisson (TPLP) Distribution 

Let 𝑥1, 𝑥2 … … … 𝑥𝑛 be independent and identically distributed (iid) random variables from the 

Pseudo- Lindley (PL) distribution whose cumulative distribution function (cdf) and probability 

density function (pdf) are given as 

 𝐺𝑃𝐿(𝑥) = 1 −
(𝜃+𝛽𝑥)𝑒−𝛽𝑥

𝜃
,   𝑔𝑃𝐿(𝑥) =

𝛽(𝜃−1+𝛽𝑥)𝑒−𝛽𝑥

𝜃
, 𝑥 > 0, 𝛽 > 0, 𝜃 ≥ 1. 

 Suppose N is discrete and follows the Truncated Poisson distribution with pmf given as  

𝑃(𝑁 = 𝑛) =
𝜆𝑛

𝑛!(𝑒𝜆−1)
   ;  𝑛 = 1,2,3 … … , 𝜆 > 0    

Let the conditional cdf of   𝑋(1)|𝑁=𝑛  be expressed as 𝐺𝑋(1)|𝑁=𝑛
(𝑥) = 1 − ∏ [1 − 𝐺𝑃𝐿𝑖

(𝑥)]𝑛
𝑖=1  

Where, then, the   𝑋(1) = 𝑚𝑖𝑛{𝑥1, 𝑥2, … … 𝑥𝑁},  Then, the  𝐺𝑃𝐿𝑖
(𝑥) =      1 −

(𝜃+𝛽𝑥)𝑒𝑥𝑝−𝛽𝑥

𝜃
 

Since the 𝑋𝑖
′s are identically distributed, it follows that  

𝐺𝑋(1)|𝑁=𝑛
(𝑥) = 1 − [1 − 𝐺𝑃𝐿(𝑥) ]𝑛 = 1 − (1 − [1 −

(𝜃+𝛽𝑥)𝑒−𝛽𝑥

𝜃
]

𝑛

)  

= 1 − (
𝜃+𝛽𝑥

𝜃
)

𝑛

𝑒−𝑛𝛽𝑥             𝑥 > 0, 𝛽 > 0, 𝜃 ≥ 1                        

(1) 

The cdf of the new TPLP distribution is the marginal cdf of 𝑋(1), is given by 

  FPLP(x) = ∑ P(N = n)𝐺𝑋(1)|𝑁=𝑛
(𝑥)∞

n=1 =    ∑
λn

n!(eλ−1)
∞
n=1 [1 − (

𝜃+𝛽𝑥

𝜃
)

𝑛

𝑒−𝑛𝛽𝑥]      

where        ∑
λn

n!(eλ−1)
        ∞ 

n=1 =  1  FPLP(x) = 1 −
1

eλ−1
∑

1

n!
[λ (

θ+βx

θ
)]

n

e−nβx∞
n=1  

Since   
λn

    n!(eλ−1)
, n = 1, 2, 3, … … … . , λ > 0 is a probability mass function it follows that 

Fplp(x) = 1 −
1

eλ−1
∑

1

n!
∞
n=1 [λ (

θ+βx

θ
) e−βx]

n

 but the Taylor series expansion, it follows that  

Fplp(x) = 1 −
1

eλ−1
[eλ(

θ+βx

θ
)𝑒−𝛽𝑥

− 1] :    𝑥 > 0, 𝜆 > 0, 𝛽 > 0, 𝜃 ≥ 0      (2) 

Equation (2) gives the cdf of the proposed 𝑇𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑 Pseudo-Lindley-Poisson distribution 

which has three parameters in contrast to the Lindley and Pseudo-Lindley distributions which 

has one and two parameters respectively. 

The probability density function of the Truncated  Pseudo-Lindley Poisson distribution can be 

obtained by taking the derivative of the cdf  shown in equation (2) with respect to the random 

variable x; 

Let the cumulative density function of the newly derived distribution be y such that ; 
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𝑦 =  Fplp(x)       =     1 −
e

λ(
θ+βx

θ
)e−βx

−1

eλ−1
  ,  The derivative of the function with respect to x is = 

 
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.Therefore, the probability density function (f(x)) of the 

distribution is
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Graphical Presentation of the Newly Derived Distribution: Figures 1,2,3 give the various 

shapes of the cdf of the proposed Truncated Pseudo-Lindley-Poisson distribution. 

 

Figure 1: The TPLP cdf  for various parameter values a, 𝜆, 𝑎𝑛𝑑 𝛽  

 The plot shows that the TPLP distribution is right-skewed. 

 

Figure2: The TPLP cdf  for various parameter values a, 𝜆, 𝑎𝑛𝑑  𝛽  

The plot also shows that the TPLP distribution is right-skewed. 
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Figure 3: The TPLP cdf for various parameter values  𝑎, 𝜆 𝑎𝑛𝑑  𝛽    

The plot shows that the TPLP distribution is right-skewed. As evident from Figures 1-3, the 

density of the TPLP distribution is always right-skewed and unimodal. This shows that the 

distribution can be very efficient in fitting right-skewed unimodal data sets. 

Density Function 

For lifetime data applications, the extra parameter in the proposed Truncated Pseudo-Lindley-

Poisson distribution is aimed at adding flexibility to the  Lindley and Pseudo-Lindley 

distributions in fitting data sets with different shape behaviour.  Differentiating the cdf with 

respect to x and gives pdf   of the proposed pseudo-Lindley-Poisson distribution as  

𝑓𝑝𝑙𝑝(𝑥) =
𝛽𝜆(𝜃 − 1 + 𝛽𝑥)𝑒

𝜆(
𝜃+𝛽𝑥

𝜃
)𝑒−𝛽𝑥

− 𝛽𝑥

𝜃(𝑒𝜆 − 1)
;    𝑤ℎ𝑒𝑟𝑒   𝑥 > 0, 𝜆 > 0, 𝛽 > 0, 𝜃 ≥ 0    
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 NOW, the parameters 𝜆, 𝛽 𝑎𝑛𝑑  𝜃   control the shape of the distribution.

 

Figure 4: The TPLP density for various parameter values 𝑎, 𝛽 𝑎𝑛𝑑 𝜆. 

 

Figure 5: The TPLP density for various parameter values   of a, 𝜆 𝑎𝑛𝑑 𝛽  
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Figure 6: The TPLP density for various parameter values 𝜆, 𝛽 𝑎𝑛𝑑 a 

Proposition   

The first proposition indicates that the new family has a PL distribution as a limiting case of 

the TPLP distribution. The PL distribution with parameters is a limiting case of the TPLP 

distribution when 𝜆 →  0+ 

Proof: 

Using the Taylor series expansion of the exponential function, the cdf  of the TPLP distribution 

in       Fplp(x)       =     1 −
exp

λ(
θ+βx

θ
)exp−βx

−1

expλ−1
   

 can be written as Fplp(x)      =       1 −
∑

1

n! 
[     λ (

𝜃+𝛽𝑥

𝜃
)     𝑒−𝛽𝑥]

n
∞
n=1

∑
λn

n!
∞
n=1

    Considering 𝛌→ 0+. Taking 

the limits of both sides, we have   

lim
λ←0+

Fplp(x) = 1 − lim
λ←0+

[
∑

1
n! [     λ (

𝜃 + 𝛽𝑥
𝜃 )      𝑒−𝛽𝑥]

n
∞
n=1

∑
λn

n!
∞
n=1

] 

1 −
lim

λ←0+
{(

θ + βx
θ ) e−βx + ∑

n
n! λn−1 [(

θ + βx
θ ) e−βx]

n
∞
n=2 }

lim
λ←0+

{1 + ∑
nλn−1

n!
∞
n=2 }

 

As 0 is substituted for 𝜆  = 1 −
{(

θ+βx

θ
)e−βx+

2

2!
(0)2−1[(

θ+βx

θ
)e−βx]

2
+⋯.}

{1+
2 (0)2−1

2!
… }

   

= 1 − (
θ+βx

θ
) e−βx  .     lim

λ←0+
Fplp(x) = 1 − (

θ+βx

θ
) e−βx  which is the cdf of the Pseudo Lindley 

(PL) distribution given by . Hence the proof is established. This shows that the cdf of (PL) of 

two parameter, 𝐺𝑃𝐿(𝑥) = 1 −
(𝜃+𝛽𝑥)𝑒−𝛽𝑥

𝜃
,  is also the same with the cdf of TPLPD with 3 

parameter. When parameter λ tends to zero from the right the new TPLPD will become the PL. 
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Quantile Function  

The quantile function Q(p), defined by  𝐹𝑇𝑝𝑙𝑝(𝑄(𝑝)) = 𝑃  is the root of the equation; we have  

     1 −
𝑒

𝜆(
𝜃+𝛽(𝑝)

𝜃
)𝑒−𝛽(𝑝)

−1

𝑒𝜆−1
   =   p   where    0 < 𝑝 < 1 

We obtain the quantile function as follows: 1 −
𝑒

𝜆(
𝜃+𝛽𝑄(𝑝)

𝜃
)𝑒−𝛽𝑄(𝑝)

−1

𝑒𝜆−1
= 𝑃 

= 𝑒
𝜆(

𝜃+𝛽𝑄(𝑝)
𝜃

)𝑒−𝛽𝑄(𝑝)

− 1 = (1 − 𝑃)(𝑒𝜆 − 1) 

= 𝑒
𝜆(

𝜃+𝛽𝑄(𝑝)
𝜃

)𝑒−𝛽𝑄(𝑝)

= (1 − 𝑃)(𝑒𝜆 − 1) + 1 

 

Divide both sides by  𝜆,  = (
𝜃+𝛽𝑄(𝑝)

𝜃
) 𝑒−𝛽𝑄(𝑝) =

1

𝜆
𝑙𝑜𝑔 𝑙𝑜𝑔 [(1 − 𝑝)(𝑒𝜆 − 1) + 1]  

Multiply both sides by 𝜃,  = (𝜃 + 𝛽𝑄(𝑝))𝑒−𝛽𝑄(𝑝) =
𝜃

𝜆
𝑙𝑜𝑔 𝑙𝑜𝑔 [(1 − 𝑝)(𝑒𝜆 − 1) + 1]  

If we define       𝑍 (𝑝) = −𝜃 − 𝛽𝑄(𝑝)       ⟹             𝑧(𝑝) + 𝜃 = −𝛽𝑄(𝑝) 

and  −𝑍(𝑝) = 𝜃 + 𝛽𝑄(𝑝),     −𝑧(𝑝)𝑒𝑧(𝑝)+𝜃 =
𝜃

𝜆
𝑙𝑜𝑔 𝑙𝑜𝑔 [(1 − 𝑝)(𝑒𝜆 − 1) + 1]  

Hence  𝑧(𝑝)𝑒𝑧(𝑝) = −
𝜃𝑒−𝜃

𝜆
𝑙𝑜𝑔 𝑙𝑜𝑔 [(1 − 𝑝)(𝑒𝜆 − 1) + 1]  

It follows that  𝑧(𝑝) = 𝑊 {−
𝜃

𝜆
𝑒−𝜃 𝑙𝑜𝑔 𝑙𝑜𝑔 [(1 − 𝑝)(𝑒𝜆 − 1) + 1] } , 

where W (.) is the Lambert-W function. (Corless et al.,1996)  

Hence                

    −𝛽𝑄(𝑝) − 𝜃 = 𝑊 {−
𝜃

𝜆
𝑒−𝜃 𝑙𝑜𝑔 𝑙𝑜𝑔 [(1 − 𝑝)(𝑒𝜆 − 1) + 1] },       0 < p < 1 

where W (.) is the negative branch of the Lambert-W function. It follows that the quantile 

function Q (p) of the TPLP distribution is expressed as 

𝑄(𝑝) = −
𝜃

𝛽
−

1

𝛽
𝑊 {−

𝜃

𝜆
𝑒−𝜃 𝑙𝑜𝑔 𝑙𝑜𝑔 [(1 − 𝑝)(𝑒𝜆 − 1) + 1] } ,                        for 0 < 𝑝 < 1.   

Using the quantile function of the TPLP distribution, the first three quantiles of the TPLP 

distribution are given respectively by  

𝑄1 = 𝑄 (
1

4
) = −

𝜃

𝛽
−

1

𝛽
𝑊 {−

𝜃

𝜆
𝑒−𝜃 𝑙𝑜𝑔 𝑙𝑜𝑔 [

3

4
(𝑒𝜆 − 1) + 1] } 

𝑄2 = 𝑄 (
1

2
) = −

𝜃

𝛽
−

1

𝛽
𝑊 {−

𝜃

𝜆
𝑒−𝜃 𝑙𝑜𝑔 𝑙𝑜𝑔 [

1

2
(𝑒𝜆 − 1) + 1] } 



African Journal of Mathematics and Statistics Studies    

ISSN: 2689-5323    

Volume 8, Issue 2, 2025 (pp. 67-84) 

75  Article DOI: 10.52589/AJMSS-55E9RVCV 

   DOI URL: https://doi.org/10.52589/AJMSS-55E9RVCV 

www.abjournals.org 

𝑄3 = 𝑄 (
3

4
) = −

𝜃

𝛽
−

1

𝛽
𝑊 {−

𝜃

𝜆
𝑒−𝜃 𝑙𝑜𝑔 𝑙𝑜𝑔 [

1

4
(𝑒𝜆 − 1) + 1] } 

    The second quantile, Q,(
1

2
) corresponds to the median of the TPLP distribution and is re-

written as  𝑀 = −
𝜃

𝛽
−

1

𝛽
𝑊 {−

𝜃

𝜆
𝑒−𝜃 𝑙𝑜𝑔 𝑙𝑜𝑔 [

1

2
(𝑒𝜆 − 1) + 1] }                         

   Samples can be simulated from the TPLP distribution by replacing P with U, where U is a 

uniform random variable defined on the interval (0, 1). Hence, if X is a random variable from 

the TPLP distribution, then 

 𝑋 = −
𝜃

𝛽
−

1

𝛽
𝑊 {−

𝜃

𝜆
𝑒−𝜃 𝑙𝑜𝑔 𝑙𝑜𝑔 [(1 −∪)(𝑒𝜆 − 1) + 1] }                   

Maximum Likelihood Estimation of the parameters of the Truncated Pseudo- Lindley- 

Poisson Distribution  

For a random independent sample  x1, x2 … . . xn of size n form the TPLP distribution, the 

maximum likelihood estimation of the parameters of the TPLP distribution involve the 

maximization of the log likelihood function defined by L = ∑ log fplp(xi)
n
n=1  

= ∑ log [
βλ(θ − 1 + βxi)e

λ(
θ+βxi

θ
) e−βxi

− βxi

θ(eλ − 1)
]

n

e=1

  

= ∑ {log β + log λ − log θ − log(eλ − 1) + log(θ − 1 + βxi) + λ (
θ + βxi

θ
) e−βxi − βxi }

n

i=1

 

= n log β + n log λ − n log θ − n log(eλ − 1) + ∑ log(θ − 1 + βxi) +n
i=1

λ ∑ (
θ+βxi

θ
) e−βxi − β ∑ xi

n
i=1    n

i=1                                

 Let θ = (θ, β, λ) be the unknown parameter vector .The associated score function is given by  

U(θ) = (
∂L

∂θ

∂L

∂β

∂L

∂λ
), where   

∂L

∂θ
, 

∂L

∂β
 and    

∂L

∂λ
 are the partial derivatives of the log-likelihood 

function w.r.t to each parameter given by 

∂L

∂θ
=

−n

θ
+ ∑

1

(θ − 1 + βxi)
− λ ∑

βxi

θ2
e−βxi

n

i=1

n

i=1

          

∂L

∂β
=

n

θ
+ ∑

xi

(θ − 1 + βxi)
+ λ ∑

xi

θ
e−βxi(1 − θ − βxi) − ∑ xi

n

i=1

n

i=1

n

i=1

  

∂L

∂λ
=

n

λ
−

neλ

eλ − 1
+ ∑ (

θ + βxi

θ
) e−βxi

n

i=1
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The maximum likelihood estimate of  𝜃 = (𝜃, 𝛽, 𝜆) can be obtained by solving the non-linear 

system of equations, 𝑈(𝜃) = 0.  Since the equations are not in closed form, the solutions can 

be found numerically using some specialised numerical optimisation. 

 

Simulation of Data 

The simulation study was conducted by generating random samples from the Truncated Pseudo 

Lindley-Poisson distribution using Monte Carlo simulation. We select eight different sample 

sizes (n = 20, 30, 50, 100, 200, 300, 500, 1000) to investigate the effect of sample size on the 

performance of MLE.  Two different parameter combinations (θ = 0.2, 0.4;   = 0.3, 0.6, λ = 

0.4, 0.8) were used to investigate the effect of parameter values on the performance of MLE. 

Generate 1000 random samples from the TPLPD for each sample size and parameter 

combination using the TPLPD generated using R software. The variance of the MLE estimates 

for each sample size and parameter combination were calculated. 

For the determination of stability and homogeneity of the distribution, it is necessary to 

determine its effectiveness as sample size varies. Using the Monte Carlo simulation approach, 

varying parameter values and sample sizes yielded are presented in Table 1 below. 

Table 1: Simulation Study for the TPLP distribution 

  = 0.2 ,   = 0.3,  = 0.4 

Sample size Parameters Estimation Biasness Variance MSE 

20   
  
  

0.211490 

0.246249 

0.430925 

0.0114898 

-0.0537507 

0.0309247 

0.0002288 

0.0147249 

0.0034540 

0.0003609 

0.0176140 

0.0044104 

30   
  
  

0.212430 

0.229270 

0.464509 

0.0124304 

-0.0707295 

0.0645094 

0.0001578 

0.0124339 

0.0071615 

0.0003123 

0.0174365 

0.0113230 

50   
  
  

0.216428 

0.227604 

0.431185 

0.0164283 

-0.0723962 

0.0311850 

0.0001707 

0.0148859 

0.0062951 

0.0004406 

0.0201271 

0.0072676 

100   
  
  

0.213985 

0.227602 

0.464126 

0.0139850 

-0.0723978 

0.0641258 

0.0000657 

0.0127325 

0.0127330 

0.0002613 

0.0179739 

0.0168452 

200   
  
  

0.210518 

0.282820 

0.418992 

0.0105181 

-0.0171799 

0.0189918 

0.0001064 

0.0179628 

0.0127201 

0.0002170 

0.0182580 

0.0130808 

300   
  
  

0.202282 

0.277753 

0.478029 

0.0022815 

-0.0222475 

0.0780293 

0.0000349 

0.0089753 

0.0063246 

0.0000401 

0.0094703 

0.0124131 

500   
  
  

0.198131 

0.344009 

0.368620 

-0.0018686 

0.0440091 

-0.0313799 

0.0000873 

0.0025124 

0.0091554 

0.0000908 

0.0044492 

0.0101401 

1000   0.201294 0.0012945 0.0000722 0.0000739 
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  
  

0.330686 

0.360292 

0.0306855 

-0.0397083 

0.0055191 

0.0027592 

0.0064607 

0.0043359 

In the Table 1, the parameters were fixed to be 0.2, 0.3 and 0.4 for  ,   and   respectively.  

The distribution was used to estimate the parameter values and biasness of the model was 

estimated as shown in the columns of the Tables. Observation is that increase in sample size 

lead to reduction in the Mean Square Error which is an indication of stability of the distribution 

with respect to sample size.   

Table 2: Simulation Study for the TPLP distribution 

  = 0.4 ,   = 0.6 ,  = 0.8 

Sample size Parameters Estimation Biasness Variance MSE 

20   
  
  

0.340314 

0.692590 

0.828832 

-0.0596860 

0.0925902 

0.0288316 

0.0380941 

0.0109153 

0.0709360 

0.0416566 

0.0194882 

0.0717673 

30   
  
  

0.405985 

0.686005 

0.901725 

0.005985 

0.086005 

0.101725 

0.0556197 

0.0139806 

0.0931763 

0.055656 

0.021378 

0.103524 

50   
  
  

0.323492 

0.804089 

0.849816 

-0.076508 

0.204089 

0.049816 

0.0349632 

0.0315989 

0.0446076 

0.0408166 

0.0732511 

0.0470892 

100   
  
  

0.336141 

0.702576 

0.827339 

-0.063858 

0.102576 

0.027339 

0.0313021 

0.0095763 

0.0412628 

0.0353801 

0.0200982 

0.0420102 

200   
  
  

0.345182 

0.701375 

0.815984 

-0.054818 

0.101375 

0.015984 

0.0300832 

0.0230356 

0.0278940 

0.0330882 

0.0333125 

0.0281495 

300   
  
  

0.353536 

0.658707 

0.812425 

-0.0464636 

0.0587072 

0.0124250 

0.0239268 

0.0236134 

0.0220002 

0.0260857 

0.0270599 

0.0221545 

500   
  
  

0.347279 

0.628547 

0.779948 

-0.0527209 

0.0285471 

-0.0200517 

0.0185051 

0.0212394 

0.0147505 

0.0212846 

0.0220543 

0.0151526 

1000   
  
  

0.312692 

0.701054 

0.763291 

-0.087308 

0.101054 

-0.036709 

0.0224830 

0.0247386 

0.0183577 

0.0301057 

0.0349505 

0.0197053 

 

In Table 2, the parameters were fixed to be 0.4, 0.6 and 0.8 for  ,   and  , respectively. It 

can be observed that an increase in sample size leads to a reduction in the Mean Squared Error, 

which is an indication of the stability of the distribution with respect to sample size. For a better 

understanding of the stability or homogeneity property of the parameters, values of variances 

of the parameters were plotted against the sample sizes. A parameter is stable if its variance 

reduces as the sample size increases. Otherwise, the parameter is not stable. See Figures 1 to 4 

below; 
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Plot of Variance of the Parameters for estimated values of   = 0.2 ,   = 0.3,  = 0.4 

Varying sample sizes were used in order to determine the homogenous property of the 

parameters in the distribution. Sample sizes 20, 30, 50, 100, 200, 500 and 1000 were used.   
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Figure 1: Plot of values of variance for the parameter    at various sample sizes.    

As shown in Figure1 , for all the sample sizes considered, the variance of the estimates for the 

parameter are all less than 0.0 which is an indication that the parameter is stable in the 

distribution. Also, increase in sample size lead to reduction in the value of the variance 

which implies the parameter performs better in the model and as sample size increases, 

the parameter becomes more stable.     
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Figure 2: Plot of values of variance for the parameter   

For the parameter  , as shown in Figure 2, for all the sample sizes considered, the variance of 

the estimates for the parameter are all less than 0.0 which is an indication that the parameter 

is stable in the distribution. Also, increase in sample size lead to reduction in the value of the 

variance which implies the parameter performs better in the model and as sample size increases, 

the parameter becomes more stable. 
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Figure 3: Plot of values of variance for the parameter   
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For   , the parameter is better for a large sample size as it has a very low variance at a sample 

size of 1000. Using the parameter values,     has high fluctuation in terms of the value of 

variance, but all the values are less than 0.0, which is an indication of better stability of the 

parameter.  

A. Plot of Variance of the Parameters for estimated values of   = 0.4 ,   = 0.6 ,  = 0.8 

Changing the parameter values to 0.4, 0.6 and 0.8, the following graphs were obtained;  
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Figure 4: Plot of values of variance for the parameter        

Figure 4 shows better stability of the parameter  , and it can be observed that a higher sample 

size favours the parameter. Therefore, it can be concluded that the parameter is stable in the 

distribution.    
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Figure 5: Plot of values of variance for the parameter   

Figure 5 shows better stability of the parameter  , and it can be observed that a higher sample 

size reduces the variability of the parameter. One can, therefore, conclude that the parameter is 

stable in the distribution. 
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Figure 6: Plot of values of variance for the parameter   

Figure 6  shows better stability of the parameter  , and it can be observed that a higher sample 

size improves the stability of the parameter by lowering its variability. Therefore, it can be 

concluded that the parameter has a tendency for long-run stability in the distribution. 

 

CONCLUSION 

This study provides an evaluation of the maximum likelihood estimate (MLE) for the 

Truncated Pseudo-Lindley Poisson Distribution (TPLPD), a widely used model for count data 

with truncation. Through an extensive simulation study, we assessed the performance of the 

MLE in terms of bias and variance, and explored the impact of sample size and parameter 

values on its accuracy. Simulation studies revealed that an increase in sample size leads to a 

reduction in the mean square error, which indicates stability of the distribution and improved 

accuracy and precision.  

Our results demonstrate that the MLE is a reliable and efficient estimator for the TPLPD, 

particularly for large sample sizes. We found that the MLE exhibits low bias and variance, 

indicating its accuracy and precision. The variance of the MLE decreases as the sample size 

increases, highlighting the importance of large samples. Researchers should use large sample 

sizes when working with the TPLPD to minimise the variance of the MLE. Care should also 

be taken when interpreting results from small samples, as the variance of the MLE may be 

large and, hence, unreliable. 
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#Plotting the Pseudo-Lindley - Poisson (PLP)  Distribution 

#================================================== 

#Pseudo-Lindley - Poisson (PLP)  Distribution  

dplp<-function(x,a,b,c)(b*c*(a-1+b*x)*exp(c*((a+b*x)/a)*exp(-b*x)-b*x)/ 

                          (a*(exp(c)-1)))   

pplp<-function(x,a,b,c) 1-((exp(c*((a+b*x)/a)*exp(-b*x))-1)/(exp(c)-1)) 

 

library(LambertW)   

library(lamW) 

qplp<-function(p,a,b,c) (-a/b)-(1/b)*lambertWm1(-(a/c)* 

                                                  log((1-p)*(exp(c)-1)+1)*exp(-a)) 

hplp<-function(x,a,b,c)  dplp(x,a,b,c)/(1-pplp(x,a,b,c)) 

Splp<-function(x,a,b,c) 1-pplp(x,a,b,c) 

#a=θ,b=β,c= λ   

#=================================================== 

#PLP Density Plot 1 

x<-seq(0,5,0.001) 

y1<-dplp(x,0.8,1,5) 

y2<-dplp(x,1,1.5,5) 

y3<-dplp(x,2.5,2,5) 

y4<-dplp(x,3.5,3.5,5) 

y5<-dplp(x,5,2,5) 

plot(c(0,3),c(0,2),type="n",ylab="f(x)",xlab="x      

     λ=5") 

lines(x,y1,col=1,lty=1) 

lines(x,y2,col=2,lty=3) 

lines(x,y3,col=3,lty=5) 

lines(x,y4,col=4,lty=7) 
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lines(x,y5,col=5,lty=9) 

legend("topright",c( 

  "α=0.8  β=1  ", 

  "α=1     β=1.5 ", 

  "α=2.5  β=2", 

  "α=3.5  β=3.5", 

  "α=5     β=2"), 

  col=1:5, bty="n",lty=c(1,3,5,7,9)) 

#================================================ 

#PLP Density Plot 2 

x<-seq(0,5,0.001) 

y1<-dplp(x,0.8,4,0.5) 

y2<-dplp(x,1,4,1) 

y3<-dplp(x,2.5,4,2.5) 

y4<-dplp(x,3.5,4,4) 

y5<-dplp(x,5,4,5) 

plot(c(0,3),c(0,2.5),type="n",ylab="f(x)",xlab="x      

     β=4") 

lines(x,y1,col=1,lty=1) 

lines(x,y2,col=2,lty=3) 

lines(x,y3,col=3,lty=5) 

lines(x,y4,col=4,lty=7) 

lines(x,y5,col=5,lty=9) 

legend("topright",c( 

  "α=0.8  λ=0.5  ", 

  "α=1     λ=1 ", 

  "α=2.5  λ=2.5", 

  "α=3.5  λ=4", 

  "α=5     λ=5"), 

  col=1:5, bty="n",lty=c(1,3,5,7,9)) 

#========================================================= 

#PLP Density Plot 3 

x<-seq(0,5,0.001) 

y1<-dplp(x,2,0.8,0.5) 

y2<-dplp(x,2,1,1) 

y3<-dplp(x,2,2,2.5) 

y4<-dplp(x,2,4,4) 

y5<-dplp(x,2,5,5) 

plot(c(0,3),c(0,2.5),type="n",ylab="f(x)",xlab="x      

     α=2") 

lines(x,y1,col=1,lty=1) 

lines(x,y2,col=2,lty=3) 

lines(x,y3,col=3,lty=5) 

lines(x,y4,col=4,lty=7) 

lines(x,y5,col=5,lty=9) 

legend("topright",c( 

  "β=0.8  λ=0.5  ", 

  "β=1     λ=1 ", 
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  "β=2     λ=2.5", 

  "β=4     λ=4", 

  "β=5     λ=5"), 

  col=1:5, bty="n",lty=c(1,3,5,7,9)) 

#=========================================================== 

#PLP CDF Plot 1 

x<-seq(0,5,0.001) 

y1<-pplp(x,0.8,1,5) 

y2<-pplp(x,1,1.5,5) 

y3<-pplp(x,2.5,2,5) 

y4<-pplp(x,3.5,3.5,5) 

y5<-pplp(x,5,2,5) 

plot(c(0,3),c(0,1),type="n",ylab="F(x)",xlab="x      

     λ=5") 

lines(x,y1,col=1,lty=1) 

lines(x,y2,col=2,lty=3) 

lines(x,y3,col=3,lty=5) 

lines(x,y4,col=4,lty=7) 

lines(x,y5,col=5,lty=9) 

legend("bottomright",c( 

  "α=0.8  β=1  ", 

  "α=1     β=1.5 ", 

  "α=2.5  β=2", 

  "α=3.5  β=3.5", 

  "α=5     β=2"), 

  col=1:5, bty="n",lty=c(1,3,5,7,9)) 

#========================================================= 

#PLP CDF Plot 2 

x<-seq(0,5,0.001) 

y1<-pplp(x,0.8,4,0.5) 

y2<-pplp(x,1,4,1) 

y3<-pplp(x,2.5,4,2.5) 

y4<-pplp(x,3.5,4,4) 

y5<-pplp(x,5,4,5) 

plot(c(0,3),c(0,1),type="n",ylab="F(x)",xlab="x      

     β=4") 

lines(x,y1,col=1,lty=1) 

lines(x,y2,col=2,lty=3) 

lines(x,y3,col=3,lty=5) 

lines(x,y4,col=4,lty=7) 

lines(x,y5,col=5,lty=9) 

legend("bottomright",c( 

  "α=0.8  λ=0.5  ", 

  "α=1     λ=1 ", 

  "α=2.5  λ=2.5", 

  "α=3.5  λ=4", 

  "α=5     λ=5"), 

  col=1:5, bty="n",lty=c(1,3,5,7,9)) 
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#========================================================== 

#PLP CDF Plot 3 

x<-seq(0,5,0.001) 

y1<-pplp(x,2,0.8,0.5) 

y2<-pplp(x,2,1,1) 

y3<-pplp(x,2,2,2.5) 

y4<-pplp(x,2,4,4) 

y5<-pplp(x,2,5,5) 

plot(c(0,3),c(0,1),type="n",ylab="F(x)",xlab="x      

     α=2") 

lines(x,y1,col=1,lty=1) 

lines(x,y2,col=2,lty=3) 

lines(x,y3,col=3,lty=5) 

lines(x,y4,col=4,lty=7) 

lines(x,y5,col=5,lty=9) 

legend("bottomright",c( 

  "β=0.8  λ=0.5  ", 

  "β=1     λ=1 ", 

  "β=2     λ=2.5", 

  "β=4     λ=4", 

  "β=5     λ=5"), 

  col=1:5, bty="n",lty=c(1,3,5,7,9)) 

#================================================================= 

 

 

 

 

 

 

 


