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ABSTRACT: This paper investigated the transient response of 

Timoshenko beams under moving loads in turbulent environments. 

The study incorporated the effects of shear deformation, rotary 

inertia, and dynamic aerodynamic forces caused by turbulence. 

The governing equations are derived from Timoshenko beam 

theory and coupled with an aerodynamic force model that 

accounts for mean and fluctuating wind velocities. A spectral 

representation of turbulent forces was employed to simulate 

realistic wind-induced forces. Numerical simulations were 

conducted using both the spectral element method (SEM) and the 

finite element method (FEM), enabling a comparison of their 

accuracy and computational efficiency. Results are presented for 

various load velocities and turbulence intensities, highlighting the 

advantages and limitations of each method. This study provided 

valuable insights into the dynamic behavior of beams in 

challenging environmental conditions, offering practical 

applications in civil, mechanical, and aerospace engineering. 

KEYWORDS: Timoshenko beam, Turbulent environments, 
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INTRODUCTION 

The dynamic behavior of beams under external loads has long been a subject of great interest 

in structural mechanics and engineering. Beams serve as fundamental components in various 

applications, including bridges, rail tracks, aerospace structures, and mechanical systems, 

where understanding their dynamic responses is critical for ensuring safety, reliability, and 

performance. While traditional studies often focus on static or quasi-static responses, modern 

engineering demands have shifted attention toward transient dynamics under complex loading 

scenarios, such as moving loads in turbulent environments. 

The Bernoulli-Euler beam theory has historically served as the foundation for analyzing beam 

deflection and stress distribution (Inglis, 1934; Adekunle & Folakemi, 2017; Ogunbamike, 

2021; Wu et al., 2023). This classical theory assumes that plane sections of the beam remain 

planar and perpendicular to the neutral axis during deformation, offering a simplified 

framework for modeling slender, long-span beams under static and dynamic loads. Despite its 

utility, this theory exhibits significant limitations when applied to thick beams, short spans, or 

high-frequency excitations. Under such conditions, the effects of transverse shear deformation 

and rotary inertia become non-negligible, resulting in inaccurate predictions of beam dynamics. 

To overcome these limitations, Timoshenko (1921) introduced a more advanced beam theory 

that incorporates shear deformation and rotary inertia, providing a comprehensive framework 

for analyzing complex beam responses. Subsequent studies (Stanisic et al., 1968; Sadiku & 

Leipholz, 1987; Jimoh, 2021) extended Timoshenko’s theory to include non-uniform cross-

sections and advanced boundary conditions, enhancing its applicability to real-world problems. 

Further refinements by Oni (1997) and Li et al. (2024) investigated the theory's suitability 

under dynamic loading scenarios, such as moving loads. These advancements have established 

Timoshenko beam theory as a robust and versatile tool for modeling the transient dynamics of 

beams. 

The behavior of beams subjected to moving loads has been extensively studied due to its 

relevance in applications such as vehicles crossing bridges or trains traveling on rails. Studies 

(Ogunbamike, 2012; Adekunle & Folakemi, 2017; Adekunle et al., 2017; Ogunbamike, 2021; 

Wu et al., 2023; Awodola et al., 2024) have shown that moving loads induce dynamic 

amplifications and resonance effects, significantly influencing the structural response. 

However, most of these studies focus on moving loads in isolation, neglecting the role of 

environmental forces. 

In real-world scenarios, beams are frequently subjected to environmental forces, including 

wind-induced aerodynamic loads. These forces become particularly complex in turbulent 

environments, where irregular fluctuations in wind velocity introduce a stochastic component 

to the loading. The energy distribution of turbulent flows is commonly modeled using the Von 

Kármán spectrum (Von Kármán, 1948) or the Davenport spectrum (Davenport, 1961), which 

characterize the frequency content of turbulence. Research by Shinozuka and Deodatis (1991, 

1996) has demonstrated the effectiveness of the spectral representation method in simulating 

stochastic wind velocity fields, enabling realistic modeling of turbulence-induced forces. 

However, the combined effects of moving loads and turbulent aerodynamic forces, particularly 

on Timoshenko beams, remain largely unexplored in existing literature. 
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Modeling the transient dynamics of beams under moving loads in turbulent environments 

presents significant challenges. Turbulence introduces a highly dynamic and unpredictable 

component to the loading, necessitating advanced numerical methods for accurate simulation. 

The spectral representation method, developed by Shinozuka and Deodatis (1991, 1996), is 

widely employed to reconstruct stochastic wind velocity time-series data, enabling realistic 

simulations of turbulence-induced forces. 

Coupling these aerodynamic forces with moving point loads further complicates the governing 

equations, which exhibit non-homogeneous and variable coefficients. Analytical methods, such 

as separation of variables or Struble's technique (Struble, 1962), often fail to yield exact 

solutions for such problems. Consequently, numerical approaches, including the finite element 

method (FEM) and the spectral element method (SEM), have become essential for solving 

these equations and analyzing the transient response of beams. FEM provides flexibility in 

handling complex geometries and boundary conditions, while SEM offers higher accuracy and 

computational efficiency for specific applications. 

This study addresses the existing research gap by investigating the transient dynamics of 

Timoshenko beams subjected to moving loads in turbulent environments. The governing 

equations are derived from Timoshenko beam theory, incorporating transverse shear 

deformation, rotary inertia, and flexural rigidity. Aerodynamic forces are modeled using the 

Von Kármán turbulence spectrum and the spectral representation method, capturing mean wind 

velocities and stochastic fluctuations. Numerical simulations are conducted using both FEM 

and SEM for spatial discretization, while the Newmark-beta method is employed for time 

integration. 

By analyzing the effects of load velocity, turbulence intensity, and beam properties on dynamic 

responses, this study provides valuable insights into the behavior of beams under complex 

loading conditions. The findings have significant implications for the design and analysis of 

structures in civil, mechanical, and aerospace engineering, contributing to the development of 

more resilient and efficient systems capable of withstanding challenging environmental 

conditions. 

Problem Formulation 

This study examines the transient response of a Timoshenko beam under a combination of a 

moving point load 𝑃(𝑥, 𝑡) and distributed turbulent aerodynamic forces 𝐹𝑡𝑢𝑟𝑏(𝑥, 𝑡). The beam 

behavior is described by a coupled system of second-order partial differential equations 

accounting for transverse shear deformation, rotary inertia, and flexural rigidity. 
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Figure 1: Geometry diagram of uniform clamped-clamped Timoshenko beam 

Figure 1 above depicts the transverse displacement 𝑉(𝑥, 𝑡) of the beam as it moves at a constant 

speed. The equation of motion is given as: 

        

[𝜌𝐴
𝜕2

𝜕𝑡2
 0 0 𝜌𝐼

𝜕2

𝜕𝑡2
 ] {𝑉(𝑥, 𝑡) 𝜑(𝑥, 𝑡) }

+ [(𝑘∗𝐺𝐴)
𝜕2

𝜕𝑥2
 − 𝑘∗𝐺𝐴

𝜕

𝜕𝑥
 − 𝑘∗𝐺𝐴

𝜕

𝜕𝑥
 − 𝐸𝐼

𝜕2

𝜕𝑥2
+ 𝑘∗𝐺𝐴 ] {𝑉(𝑥, 𝑡) 𝜑(𝑥, 𝑡) }

= {𝑄(𝑥, 𝑡) 0 }                   (1) 

               

𝑄(𝑥, 𝑡) = 𝑃(𝑥, 𝑡) + 𝐹𝑡𝑢𝑟𝑏(𝑥, 𝑡)                                    (2) 

In this problem, the time coordinate is represented by t, while 𝜌𝐴 denotes the mass per unit 

length of the beam. Additionally, EI refers to the flexural rigidity, E, is Young’s modulus, I, is 

the moment of inertia of the cross-section of the beam, G, is the shear modulus, 𝑘∗, is the shear 

correction factor, 𝜌 is the density of the beam material, 𝜌𝑎𝑖𝑟, is the density of air, and x 

represents the spatial coordinate. 𝑘∗𝐺𝐴, is shear rigidity, 𝜑(𝑥, 𝑡) indicates beam rotation due to 

bending, and Q (x, t) denotes total force, combining moving load 𝑃(𝑥, 𝑡) and turbulent force 

𝐹𝑡𝑢𝑟𝑏(𝑥, 𝑡). Notably, in this specific circumstance, the dispersed load traversing the beam bears 

a weight akin to that of the beam itself. Therefore, it must not be disregarded as its effect 

considerably influences the dynamic system's behavior. Thus, moving load, 𝑃(𝑥, 𝑡) and 

turbulent force, 𝐹𝑡𝑢𝑟𝑏(𝑥, 𝑡) will typically modeled as follows: 

      

𝑃(𝑥, 𝑡) = 𝑓𝑜𝛿(𝑥 − 𝑐𝑡)                                                 (3)  

𝐹𝑡𝑢𝑟𝑏(𝑥, 𝑡) =
1

2
𝜌𝑎𝑖𝑟𝐶𝐷𝐴𝑝𝑟𝑜𝑗[𝑈(𝑡) + 𝑢′(𝑥, 𝑡)]2           (4) 
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where 𝛿(𝑥 − 𝑐𝑡), is the Dirac delta function ensuring the load acts at 𝑥 = 𝑐𝑡, c is the velocity 

at any instance t, where 𝑢′(𝑥, 𝑡) is the stochastic fluctuation in wind velocity, 𝑓𝑜 is the 

magnitude of the load, 𝐶𝐷, is the drag coefficient (depends on the shape and orientation of the 

beam), 𝐴𝑝𝑟𝑜𝑗, is the projected area of the beam perpendicular to the wind direction, 𝑈(𝑡), is 

the mean wind velocity as a function of time.                                      

Turbulent Wind Velocity 𝒖′(𝒙, 𝒕) 

The fluctuating wind velocity 𝑢′(𝑥, 𝑡) represents the variation in wind speed due to turbulence. 

This can be modeled using a spectral approach, where the turbulence is characterized by its 

power spectral density (PSD) at different frequencies. The Von Kármán turbulence spectrum 

is commonly used for this purpose. The Von Kármán spectrum for turbulence at a frequency f 

is given by: 

𝑆𝑢(𝑓) =
𝜎𝑢

2𝐿𝑢

𝜋𝑈∞
[1 + 70.8 (

𝑓𝐿𝑢

𝑈∞
)

2

]

−
5
6

           (5) 

where 𝑆𝑢(𝑓), is the power spectral density (PSD) of the turbulence at frequency f, which 

quantifies the intensity of turbulence at different scales, 𝜎𝑢, is the standard deviation of the 

turbulent wind velocity, representing the magnitude of fluctuations in the wind, 𝐿𝑢, is the 

turbulence integral length scale, a measure of the scale over which turbulent fluctuations are 

correlated, and 𝑈∞, is the mean wind velocity, representing the average steady-state wind 

speed. This spectrum describes how the turbulence intensity varies across different frequency 

ranges, providing insight into the energy distribution in the turbulent flow. The exponent −
5

6
 

indicates the characteristic scaling of turbulence in the inertial subrange, where the energy in 

the turbulence follows a power-law decay with frequency.  

 

The fluctuating wind velocity 𝑢′(𝑥, 𝑡) is then reconstructed using a stochastic simulation 

technique called the spectral representation method. This approach involves creating a time 

series of the fluctuating wind velocity that matches the given turbulence spectrum. 

𝑢′(𝑥, 𝑡) = ∑ √2𝑆𝑢(𝑓𝑖)∆𝑓𝑐𝑜(2𝜋𝑓𝑖𝑡 + 𝜙𝑖)
𝑁𝑓

𝑖=1
                   (6),  

where 𝜙𝑖 are random phases. 

The boundary conditions of the problem are deemed arbitrary, thereby allowing for the 

adoption of any form of classical boundary conditions. In contrast, without sacrificing 

generality, the initial conditions are presented as follows: 

 

                                    𝑉(𝑥, 0) =
𝜕𝑉(𝑥,0)

𝜕𝑡
= 𝜑(𝑥, 0) =

𝜕𝜑(𝑥,0)

𝜕𝑡
= 0             (7) 
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Solution Procedure 

The Partial Differential Equation (1) presents non-homogeneous variable coefficients, making 

the separation of variables method seem infeasible due to the difficulty of deriving separate 

equations with functions reliant on a single variable. It is clear that traditional methods are 

unlikely to produce an exact solution for this equation. Even Struble's widely used technique 

(Struble, 1962) struggles due to the fluctuating magnitude of the turbulent force, denoted as 

𝐹𝑡𝑢𝑟𝑏(𝑥, 𝑡). Consequently, we apply two advanced numerical methods: The Finite Element 

Method (FEM) and Spectral Element Method (SEM) for modelling the structure, and we 

will subsequently apply the Newmark numerical integration method to solve the resulting semi-

discrete time-dependent equation and obtain the desired responses. 

Finite Element Method (FEM) 

Discretization of the Beam 

In analysing a beam element, it is essential to discretize both the spatial and temporal 

coordinates. Begin by dividing the beam into small segments of n elements with uniform length 

Δx, and approximate the displacement V (x, t) as well as the rotation 𝜑(𝑥, 𝑡) at each node. 

Each element is characterized by two degrees of freedom: the displacement Vi and the rotation 

𝜃i at each node. Spatial interpolation can be achieved by employing shape functions N(x), while 

the temporal derivatives are approximated based on the time step chosen. Shape functions N(x) 

are used to interpolate displacements and rotations within each element to approximate the 

solution. 

𝑉(𝑥) ≈ 𝑁1(𝑥)𝑉1 + 𝑁2(𝑥)𝜑1 + 𝑁3(𝑥)𝑉2 + 𝑁4(𝑥)𝜑2                                   (8) 

where N1(x), N2(x), N3(x), N4(x) are cubic Hermite shape functions defined as: 

𝑁1(𝑥) = 1 − 3𝜉2 + 2𝜉3, 𝑁2(𝑥) = 𝑥𝑒(𝜉 − 2𝜉2 + 𝜉3), 

𝑁3(𝑥) = 3𝜉2 − 2𝜉3, 𝑁4(𝑥) = 𝑥𝑒(−𝜉2 + 𝜉3)          (9) 

where 𝜉 =
𝑥−𝑥1

𝑥𝑒
 is the normalized coordinate along the element, 𝑥1 is the element's starting 

node, and 𝑥𝑒 = 𝑥2 − 𝑥1 is the element length. 

Element Stiffness and Mass Matrices 

Each beam element will have a mass matrix and a stiffness matrix. The mass matrix reflects 

the distribution of mass along the beam, and the stiffness matrix reflects the beam's resistance 

to deformation due to bending and shear. For each element: 

The mass matrix for the transverse displacement and rotation Me is derived as: 

𝑀𝑒 = ∫ [𝜌𝐴 0 0 𝜌𝐼 ]𝑁(𝑥)𝑁(𝑥)𝑇𝑑𝑥
𝑒𝑙𝑒𝑚𝑒𝑛𝑡

                                                (10) 

The element stiffness matrix (Ke) incorporates shear and bending contributions: 
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𝐾𝑒 = ∫ [𝑘∗𝐺𝐴 − 𝑘∗𝐺𝐴 − 𝑘∗𝐺𝐴 − 𝐸𝐼 + 𝑘∗𝐺𝐴 ]
𝜕𝑁(𝑥)

𝜕𝑥

𝜕𝑁(𝑥)𝑇

𝜕𝑥𝑒𝑙𝑒𝑚𝑒𝑛𝑡

𝑑𝑥               (11) 

Load Vector 

The external loads on the beam include both the moving point load P(x,t) and distributed 

turbulent aerodynamic force Fturb(x,t). The element load vector 𝐹𝑒(𝑥, 𝑡) is expressed as: 

𝐹𝑒(𝑥, 𝑡) = ∫ [𝑄(𝑥, 𝑡) 0 ]𝑁(𝑥)
𝑒𝑙𝑒𝑚𝑒𝑛𝑡

𝑑𝑥                                                    (12) 

where 𝑄(𝑥, 𝑡) = 𝑃(𝑥, 𝑡) + 𝐹𝑡𝑢𝑟𝑏(𝑥, 𝑡), 𝑃(𝑥, 𝑡) = 𝑓𝑜𝛿(𝑥 − 𝑐𝑡), is the moving point load 

modeled using the Dirac delta function and 𝐹𝑡𝑢𝑟𝑏(𝑥, 𝑡) =
1

2
𝜌𝑎𝑖𝑟𝐶𝐷𝐴𝑝𝑟𝑜𝑗[𝑈(𝑡) + 𝑢′(𝑥, 𝑡)]2, is 

the stochastic turbulent wind force. 

Load Contributions from Q(x,t): 

i. Contribution from 𝑃(𝑥, 𝑡) = 𝑓𝑜𝛿(𝑥 − 𝑐𝑡): 

The Dirac delta function concentrates the load at x = ct. Over an element, its contribution can 

be approximated as: 

∫ 𝑃(𝑥, 𝑡)𝑁(𝑥)𝑑𝑥 ≈ 𝑓𝑜𝑁(𝜉𝑐)
𝑒𝑙𝑒𝑚𝑒𝑛𝑡

                                                         (13) 

where 𝜉𝑐 =
𝑐𝑡−𝑥1

𝑥𝑒
 is the position of the moving load normalized to the element. 

ii. Contribution from 𝐹𝑡𝑢𝑟𝑏(𝑥, 𝑡):  

The turbulent force 𝐹𝑡𝑢𝑟𝑏(𝑥, 𝑡) varies continuously over the element. Its contribution is 

computed as: 

∫ 𝐹𝑡𝑢𝑟𝑏(𝑥, 𝑡)𝑁(𝑥)𝑑𝑥 
𝑒𝑙𝑒𝑚𝑒𝑛𝑡

                                                                     (14) 

Substitute 𝐹𝑡𝑢𝑟𝑏(𝑥, 𝑡) =
1

2
𝜌𝑎𝑖𝑟𝐶𝐷𝐴𝑝𝑟𝑜𝑗[𝑈(𝑡) + 𝑢′(𝑥, 𝑡)]2 into the integral (14). Numerical 

integration (Gaussian quadrature) is used to compute this term. 

 

Final Expression for the Element Load Vector: 

Using equations (10), (13), and (14), the element load vector becomes: 

𝐹𝑒(𝑥, 𝑡) = [
𝑓𝑜𝑁(𝜉𝑐) + ∫ 𝐹𝑡𝑢𝑟𝑏(𝑥, 𝑡)

𝑒𝑙𝑒𝑚𝑒𝑛𝑡

𝑁(𝑥)𝑑𝑥

0

]                        (16) 
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Spectral Element Discretization 

Spectral Basis Functions 

We approximate V(x,t) and 𝜑(𝑥, 𝑡) within each spectral element using high-order 

polynomials as basic functions: 

𝑉(𝑥, 𝑡) = ∑ 𝜓𝑖(𝑥)𝑉𝑖(𝑡),

𝑁

𝑖=1

𝜑(𝑥, 𝑡) = ∑ 𝜓𝑖(𝑥)

𝑁

𝑖=1

𝜑𝑖(𝑡).                (17) 

Here: 

𝜓𝑖(𝑥): Polynomial basis function for node i (Chebyshev polynomials), 

𝑉𝑖(𝑡): Transverse displacement at node i, 

𝜑𝑖(𝑡): Rotation due to bending at node i, 

N: Number of spectral nodes per element. 

Element Matrices 

Substitute the polynomial approximations into the governing equation. For each spectral 

element, we compute: 

Mass Matrix (Me): 

𝑀𝑒 = ∫ [𝜌𝐴 0 0 𝜌𝐼 ]𝜓(𝑥)𝜓(𝑥)𝑇
1

−1

𝑑𝑥                                           (18) 

Stiffness Matrix (Ke): 

𝐾𝑒 = ∫ [𝑘∗𝐺𝐴 − 𝑘∗𝐺𝐴 − 𝑘∗𝐺𝐴 − 𝐸𝐼 + 𝑘∗𝐺𝐴 ]
1

−1

𝜕𝜓(𝑥)

𝜕𝑥

𝜕𝜓(𝑥)𝑇

𝜕𝑥
𝑑𝑥            (19) 

Load Vector (Fe): 

𝐹𝑒(𝑥, 𝑡) = ∫ [𝑄(𝑥, 𝑡) 0 ]
1

−1
𝜓(𝑥)𝑑𝑥                                                    (20), 

where 𝑄(𝑥, 𝑡) = 𝑃(𝑥, 𝑡) + 𝐹𝑡𝑢𝑟𝑏(𝑥, 𝑡). 

Mapping to Physical Coordinates 

Transform the integration limits from [−1, 1] in spectral coordinates to [x1, x2] in physical 

coordinates: 

𝑥 =
𝑥2 − 𝑥1

2
𝜉 +

𝑥2 − 𝑥1

2
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The derivatives transform as: 

𝜕

𝜕𝑥
=

2

𝑥2 − 𝑥1

𝜕

𝜕𝜉
 

Gauss-Lobatto Quadrature 

To compute the integrals, we use Gauss-Lobatto quadrature, which evaluates the integral as: 

∫ 𝑓(𝑥)
1

−1

𝑑𝑥 ≈ ∑ 𝜔𝑖(𝑥)

𝑁

𝑖=1

𝑓(𝑥𝑖) 

where 𝑥𝑖 is a Gauss-Lobatto nodes and 𝜔𝑖 is a Quadrature weight. 

Global System of Equations 

The local mass, stiffness, and load matrices for individual elements are combined to form 

global matrices. The global system of equations is then expressed as: 

𝑀
𝜕2𝑢

𝜕𝑡2
+ 𝐾𝑢 = 𝐹(𝑡)                                                                                    (17) 

where u is the vector of displacements and rotations at all nodes, and F(t) is the global load 

vector. 

Time Integration: Newmark-Beta Method 

To solve the semi-discrete equations, the Newmark-Beta method is employed for time 

integration. This method is widely used for structural dynamics due to its stability and 

accuracy. The displacements (u), velocities (v), and accelerations (a) are updated as follows: 

𝑢(𝑡 + 𝛥𝑡) = 𝑢(𝑡) + 𝛥𝑡𝑣(𝑡) +
𝛥𝑡2

2
𝑎(𝑡) 

𝑣(𝑡 + 𝛥𝑡) = 𝑣(𝑡) + 𝛥𝑡𝑎(𝑡) (18) 

where 𝛥𝑡 is the time step. The simulation is iteratively performed over the entire analysis period 

to capture the beam's time-dependent response. 
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ANALYSIS OF RESULT AND DISCUSSION 

To illustrate the presented analysis, a uniform beam with a length of 10 meters is examined. 

The load velocity is set at varying values of vload = 5, 10, 20, and 40 meters per second to 

analyze the effect of velocity on the beam's response. Young's modulus is set to E = 2.1×1011 

Pa for high flexural rigidity and E = 0.5×1011 Pa for low flexural rigidity, while the moment of 

inertia of the beam cross-section is fixed at I = 1 × 10−6 m4. The mass per unit length of the 

beam is taken as M = ρA = 7850 kg/m3 × 0.01 m2 = 78.5 kg/m. 

The turbulence intensity (σu) values are set to 1 m/s, 5 m/s, and 10 m/s to examine their 

influence on the beam's dynamic response. The shear modulus is fixed at G = 8.1 × 1010 Pa, 

and the shear correction factor is taken as κ = 5/6. 

The transverse deflection of this beam is calculated for various load velocities and turbulence 

intensities using the finite element method (FEM) for spatial discretization and the Newmark-

beta method for time integration and spectral element method (SEM). 

Effect of Load Velocity: 

● At higher load velocities (vload = 20 m/s and 40 m/s), the transverse displacement of the 

beam exhibits greater oscillations, particularly near critical velocities where resonance 

effects are prominent. 

● Beams with high flexural rigidity (E = 2.1×1011Pa) show reduced overall displacements 

compared to those with low flexural rigidity (E = 0.5×1011Pa), indicating better resistance 

to dynamic loads. 

Impact of Turbulence Intensity:  

● Increased turbulence intensity (σu =10 m/s) amplifies the stochastic variations in 

displacement, introducing irregular fluctuations in the beam's response over time. 

● For beams with lower flexural rigidity, the effect of turbulence is more pronounced, as 

the structure is less able to absorb and dampen these dynamic forces. 
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Figure 2: Transverse displacement of the uniform clamped-clamped Timoshenko beams 

for various turbulence intensity (σu) values and load velocity vload for low flexural rigidity 

traversed by moving distributed force using FEM. 

 

 

Figure 3: Transverse displacement of the uniform clamped-clamped Timoshenko beams 

for various turbulence intensity (σu) values and load velocity vload for low flexural rigidity 

traversed by moving distributed force using SEM. 
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Figure 4: Transverse displacement of the uniform clamped-clamped Timoshenko beams 

for various turbulence intensity (σu) values and load velocity vload for high flexural rigidity 

traversed by moving distributed force using FEM. 

 

 

Figure 5: Transverse displacement of the uniform clamped-clamped Timoshenko beams 

for various turbulence intensity (σu) values and load velocity vload for high flexural rigidity 

traversed by moving distributed force using SEM. 
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Figures 2–5 illustrate the transverse displacement responses of a clamped-clamped 

Timoshenko beam subjected to moving loads and turbulence forces. The analysis is conducted 

using both the Finite Element Method (FEM) and the Spectral Element Method (SEM) to 

capture the dynamic behavior of the beam. 

The figures depict the influence of: 

(i) Load velocity (vload) while keeping other parameters constant, 

(ii) Turbulence intensity (σu), with other factors fixed, and 

(iii) Flexural rigidity (EI) while maintaining all other conditions unchanged. 

The results indicate that as load velocity increases, the amplitude of transverse displacement 

also rises, demonstrating the expected dynamic response of the beam. Additionally, higher 

turbulence intensity leads to greater fluctuations in displacement, emphasizing the impact of 

aerodynamic disturbances. However, increasing the flexural rigidity results in a significant 

reduction in beam deflection, highlighting the stiffening effect of structural properties. These 

trends are consistently observed across both FEM and SEM simulations, validating the 

accuracy and reliability of the numerical methods employed. 

 

Figure 6: Comparison of SEM and FEM of the transverse displacement of clamped-clamped 

Timoshenko beams under moving loads in turbulent environments.  

Figure 6 shows the comparison of spectral element method (SEM) and FEM. The findings 

indicate that SEM provides a smoother and more precise response, especially for high flexural 

rigidity cases, while FEM shows slightly higher numerical dispersion. 

 

CONCLUSION 

This research investigated the transient dynamics of a Timoshenko beam under moving loads 

and turbulence forces using both FEM and SEM approaches. The results demonstrated that the 

SEM method offers better accuracy and stability in capturing beam dynamics compared to 

FEM, particularly for higher flexural rigidity. The effect of turbulence and moving load 

velocity significantly influences displacement, with higher turbulence intensities leading to 

amplified oscillations. The study provided valuable insights into the behavior of Timoshenko 

beams under complex loading conditions, contributing to improved structural design and 
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vibration control strategies. Future work could explore optimization techniques to mitigate 

unwanted vibrations and enhance computational efficiency. This study features multiple 

intriguing aspects, as revealed by numerical analysis: 

1. Increasing the velocity of the moving load significantly influences the dynamic response, 

with higher velocities causing greater oscillations and increased transient effects.  

2. The turbulent force adds complexity to the system’s response, amplifying oscillatory 

behavior and leading to more significant variations in displacement. 

3. The clamped-clamped boundary conditions introduce constraints that shape the modal 

response, particularly affecting the frequency and amplitude of oscillations. 

4. Comparing the displacement results, SEM provides a smoother and more precise 

response, especially for high flexural rigidity cases, while FEM shows slightly higher 

numerical dispersion. 
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