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ABSTRACT: This study examines exchange rate volatility with 

Generalized Autoregressive Conditional heteroscedastic 

(GARCH) models using daily exchange rate data obtained from 

the central bank of Nigeria between 1st January 2017 and 31st 

December 2019. The ARCH LM test of the mean equation revealed 

the presence of conditional heteroscedasticity. The returns were 

modeled using ARCH (3), GARCH (2,2), Exponential Generalized 

Autoregressive Conditional Heteroscedastic (EGARCH) (3,2), 

and Threshold Generalized Autoregressive Conditional 

Heteroscedastic (TGARCH) (1,1). The results revealed that 

EGARCH (3,2) was the best since it has the least AIC of -24.3197 

and SIC of -24.2741. A diagnostic test of the EGARCH (3,2) model 

residuals with Ljung-Box  and the ARCH LM tests revealed that 

the models were free from higher order autocorrelation and 

conditional heteroscedasticity respectively. The parameters of the 

EGARCH (3,2) model were significant and the positive value of 

the leverage parameter is an indication of absence of leverage 

effect in the returns of Naira-Dollar exchange rate. The absence 

of the leverage effect in the exchange rate indicates that positive 

shocks increase volatility than negative shocks of equal 

magnitude. Thus, the implication is that strengthening the Dollar 

(weakening the Naira) leads to higher period volatility than when 

the Naira is strengthened by the same amount. It is recommended 

that the central bank should put in place long-term measures to 

stabilize the Naira since weakening the Naira increases the 

uncertainty in the exchange market than strengthening the Naira. 

KEYWORDS: Exchange Rate, Economic Growth, Garch, 

Heteroscedasticity, Volatility. 
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INTRODUCTION 

Many economies, developed and developing, have faced significant real exchange rate 

volatility, leading to uncertainty in achieving key macroeconomics and monetary policy goals, 

such as price stability and economic growth. This volatility creates real unpredictable 

fluctuations in relative prices, making it challenging for economies to be stabilized. Stable 

exchange rates play a crucial role in attracting foreign investment (both direct and portfolio), 

maintaining price stability, and promoting sustainable economic growth. 

The exchange rate between the Nigerian Naira (NGN) and the US dollar (USD) is seen as the 

number of the Nigerian Naira needed to purchase one US dollar. Also, significant and 

unpredictable fluctuations in exchange rates pose a substantial challenge to macroeconomic 

stabilization policies. Having studied the effects that changes in exchange rates can have on 

economic conditions, policymakers seek to comprehend strategies for mitigating exchange rate 

volatility and understanding the potential consequences of such actions (Kuntomah, 2013). 

In international trade, goods and services are exchanged across national borders, but each 

country’s currency is typically not accepted as a legal tender in another country. This creates a 

payment problem, as the importer must acquire the exporter’s country’s currency to settle 

transactions. For example, Indian rupees are not acceptable as a medium of exchange in 

Nigeria, nor is Nigerian Naira acceptable in Japan. Therefore, to facilitate international trade, 

importers purchase foreign currencies in the foreign exchange market, where currencies are 

bought and sold. 

Exchange rate volatility is said to have implications for the financial system of a country, 

especially the tradable sector. Changes in exchange rates have pervasive effects, with 

consequences for prices, incomes, interest rates, manufacturing levels, and job opportunities, 

and thus with direct or indirect repercussions for the welfare of virtually all economic 

participants.  

Aim and Objectives of the Study 

The aim of the study is to model exchange rate volatility between the Nigerian Naira and the 

United States Dollars. In addition to the aim, the following specific objectives will be explored: 

1. To develop an appropriate GARCH model for the Naira/Dollar exchange rate 

2. To test the adequacy of the selected model for use. 
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LITERATURE REVIEW 

Bollerslev (1986) acknowledged the usefulness of the ARCH process in modeling several 

different economic phenomena. However, he noted that in most of those applications, the 

introduction of a rather arbitrary linear declining lag structure in the conditional variance 

equation to take account of the long memory was typically found in empirical work because 

estimation of a totally free lag distribution would often lead to violation of the non-negativity 

constraints. He then came up with GARCH, a more general class of processes which allowed 

for a more flexible lag structure which also permitted a more parsimonious description. 

Dickson and Ukavwe (2013) applied the error correction and GARCH models to investigate 

the impact of exchange rate fluctuations on trade variations in Nigeria, using annual time series 

data from 1970 to 2010. The results of the study showed that exchange rate volatility is not 

significant in explaining variations in import, but was found to be statistically significant and 

positive in accounting for variations in export. Serenis and Tsounis (2014) examined the effect 

of volatility on two small countries—Croatia and Cyprus—on aggregate exports during the 

period 1970 to 2012. ARDL methodology was adopted and results suggested that there is a 

positive effect of volatility on exports of Croatia and Cyprus.  

Kuhe and Chiawa (2017) investigated the impact of structural breaks on the conditional 

variance of daily stock returns of 8 commercial banks in the Nigerian stock market for the 

period 17th February, 2003 to 31st September 2016. Using symmetric GARCH and asymmetric 

EGARCH and TGARCH models with and without dummy variables, they evaluated variance 

persistence, mean reversion, asymmetric and leverage effects. Results revealed high 

persistence in conditional volatility for the banking stocks when structural breaks were ignored. 

However, incorporating random level shifts into the models reduced the estimated conditional 

volatility, suggesting that accounting for structural breaks is crucial for accurate volatility 

modeling. 

Oyinlola, Mutiu A. (2018) examined the volatility persistence and asymmetry of Naira/Dollar 

exchanges rate using monthly data between January 2004 and November 2017. The study 

employed Generalized Autoregressive Conditional Heteroscedasticity (GARCH) (1, 1), 

TGARCH (1, 1) and EGARCH (1, 1). The findings showed that persistence is generally 

explosive in the Bureau de Change (BDC) market as compared to interbank market where the 

persistence was high but not explosive, especially under asymmetric models. Based on the 

model selection criteria, the symmetric GARCH model appears to be better than the 

asymmetric ones in dealing with exchange rate volatility in the interbank market, while 

asymmetric GARCH, especially TGARCH, seems to be better in the case of BDC market. 

Shamiri and Hassan (2005) examined and estimated the three GARCH (1, 1) models (GARCH, 

EGARCH and GJR-GARCH) using the daily price data of two Asian stock indices, Strait Time 

Index in Singapore (STI) and Kuala and Luampur Composite Index in Malaysia (KLCI) over 

a 14-year period. The competing models—GARCH, EGARCH and GJR-GARCH—were 

developed based on three different distributions: Gaussian normal, student-t, Generalized Error 

Distribution. The estimated results showed that the forecasting performance of asymmetric 

GARCH models (GJR-GARCH and EGARCH), especially when fat-tailed asymmetric 

densities are taken into account in the conditional volatility, was better than symmetric 

GARCH. Moreover, it was found that the AR (1)-GJR model provided the best out-of-sample 
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forecast for the Malaysian stock market, while AR (1)-EGARCH provided a better estimation 

for the Singaporean stock market. 

 

RESEARCH METHODOLOGY 

This study utilized secondary data on the exchange rate between the Nigerian Naira (NGN) and 

the United States Dollar (USD) spanning from January 1, 2017 to December 31, 2019, 

comprising 1095 data points for modeling purposes. For the in-sample forecast evaluation, a 

subset of 31 observations was used, covering the period from December 1, 2019 to December 

31, 2019. The data were obtained from the central bank of Nigeria and were analyzed with 

Eviews 9 version. In this study, returns (𝑟𝑡) were calculated as the continuously compounded 

returns which are the first difference in logarithms of the interbank exchange rate.  

𝑟𝑡 = 𝑙𝑜𝑔 (
𝐸𝑅𝑡

𝐸𝑅𝑡−1
)                                                                                                                       (1) 

where 𝐸𝑅𝑡means Naira/Dollar exchange rate at time 𝑡 and 𝐸𝑅𝑡−1 represents exchange rate at 

time 𝑡 − 1. The 𝑟𝑡 in equation 3.1 will be used in investigating the volatility of the interbank 

exchange rate.  

Unit Root Tests 

A financial time series whose mean, variance and auto-covariance are constant is considered 

to be stationary. This means auto-covariance function as 𝐶𝑜𝑣(𝑦𝑡, 𝑦𝑡+𝑘) for any lag k is only a 

function of k and not time, that is, 𝛾𝑦(𝑘) = 𝐶𝑜𝑣(𝑦𝑡, 𝑦𝑡+𝑘). However, most of the financial time 

series, such as interest rate, exchange rates, or the price series of an asset tend to be non-

stationary. These series do not satisfy the requirements of stationarity, so they have to be 

converted to stationary processes before modeling. 

We shall use the Augmented Dickey-Fuller (ADF) test to establish the stationarity or otherwise 

of the data.  

The Dickey-Fuller Test  

Dickey-Fuller (DF) test is a statistic used to test whether the series contains unit root or not. (A 

time series that is non-stationary is said to exhibit unit root.) The test is performed by estimating 

regression models. The regression model can be fitted with constant and trend. The model with 

constant captures the non-zero mean under the alternative hypothesis.  

The testing procedure for the ADF test is the same as for the Dickey-Fuller test but it is applied 

to the model: 

𝛥𝑦𝑡 = 𝛼 + 𝛽𝑡 + 𝜋𝑦𝑡−1 + 𝛾1𝛥𝑦𝑡−1 + ⋯ + 𝛾𝑝−1𝑦𝑡−𝑝+1 + 𝜀𝑡                                                    (2)                                                         

where 𝛼 is a constant and 𝛽 is the coefficient of a time trend p, the lag order of the 

autoregressive process, imposing the constraints 𝛼 = 0 and 𝛽 = 0 corresponding to modeling 

a random walk with a drift. The null hypothesis for this test is 𝐻0: 𝛾 = 0, the existence of unit 

root, and the alternative hypothesis is 𝐻1: 𝛾 < 0, the non-existence of unit root. The test statistic 

for the ADF test is given by 
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𝐴𝐷𝐹 =
𝛾

𝑆𝐸(𝛾̂)
                                                                                                                           (3)                                                                

where 𝛾 denotes the least squares estimates of 𝛾 and 𝑆𝐸(𝛾̂) is the standard error. The null 

hypothesis is rejected if the test statistic is greater than the critical value. The estimation 

technique is Ordinary Least Squares (OLS). 

ARMA Model  

ARMA models are the combination of the simple AR and MA models of order (p, q) called the 

Autoregressive Moving Average model (ARMA). The p represents the order of the 

autoregressive process and the q represents the order of the moving average process. The 

general form of the model is given by  

𝑦𝑡 = 𝜇 + 𝜙1𝑦𝑡−1 + 𝜙2𝑦𝑡−2 + … + 𝜙𝑝𝑦𝑡−𝑝 + 𝜀𝑡 + 𝜃1𝜀𝑡−1 + 𝜃2𝜀𝑡−2 + … + 𝜃𝑝𝜀𝑡−𝑝            (4) 

Testing for Heteroscedasticity 

The Lagrange Multiplier (LM) test for ARCH effects, proposed by Engle (1982), is applied. 

In summary, the test procedure is performed by first obtaining the residuals from the ordinary 

least squares regression of the conditional mean equation which might be an autoregressive 

(AR) process, moving average (MA) process or a combination of AR and MA processes—

(ARMA) process. For example, in ARMA (1, 1) process, the conditional mean equation is as 

given below: 

 𝑦𝑡 = 𝛼0 + 𝛼𝑦𝑡−1 + 𝜀𝑡 + 𝜃𝜀𝑡−1                                                                                            (5) 

After obtaining the residuals, the next step is regressing the squared residuals on a constant and 

q lags as in the equation below: 

𝑒𝑡
2 = 𝛼0 + 𝛼1𝑒𝑡−1

2 + 𝛼2𝑒𝑡−2
2 + ⋯ + 𝛼𝑞𝑒𝑡−𝑞

2 + 𝑣𝑡                                                                 (6) 

where 𝑒𝑡 is the residual. 

If there exists no ARCH-effect, then it implies that the residuals of the model are homoscedastic 

(have constant variance).  

The Autoregressive Conditional Heteroscedasticity (ARCH) 

The essence of the model was that it is much more efficient to be used simultaneously for the 

mean and variance of a financial time series in the case that the conditional variance is not 

constant. The basic idea of ARCH models is that (a) the shock 𝑎𝑡 of the financial instrument is 

serially uncorrelated, but depends, and (b) the dependence of 𝑎𝑡 can be described by a simple 

quadratic function of its lagged values. Specifically, an ARCH (p) model assumes that 

𝜎𝑡
2 = 𝛼0 + 𝛼1𝜀𝑡−1

2 + ⋯ + 𝛼𝑝𝑎𝑡−𝑝
2 , 𝜀𝑡 = 𝜎𝑡𝜖𝑡                                                                        (7) 

ARCH (1) model is given as  

𝜎𝑡
2 = 𝛼0 + 𝛼1𝜀𝑡−1

2,   𝜀𝑡 = 𝜎𝑡𝜖𝑡                                                                                            (8) 
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where  𝜀𝑡, defined as 𝜀𝑡 = 𝜎𝑡𝜖𝑡, is a sequence of independently and identically distributed (iid) 

random variables with zero mean and variance 1, 𝛼0 > 0 𝑎𝑛𝑑 𝛼𝑖 ≥ 0. 

Generalized Autoregressive Conditional Heteroscedastic Models 

A Generalized Autoregressive Conditional Heteroscedasticity (GARCH) model was first 

developed by Bollerslev in 1986. In order to capture the dynamics of volatility, high order if 

ARCH has to be estimated. The particular feature of this model was to introduce and use the 

lagged conditional variance terms as autoregressive terms. The standard GARCH (p, q) process 

is as specified below: 

𝜎𝑡
2 = 𝛼0 + ∑ 𝛼𝑖𝜀𝑡−1

2𝑝
𝑖=1 + ∑ 𝛽𝑗𝜎𝑡−𝑗

2
𝑞
𝑗=1  , 𝜀𝑡 = 𝜎𝑡𝜖𝑡                                                                  (9) 

where, 𝜀𝑡 𝑖𝑠 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑎𝑠   𝜀𝑡 = 𝜎𝑡𝜖𝑡, is a sequence of iid random variables with mean 0 and 

variance 1. 

𝛼0 > 0, 𝛼𝑖 ≥ 0, 𝛽𝑗 ≥ 0       𝑎𝑛𝑑  ∑ (𝛼𝑖 + 𝛽𝑗)

𝑚𝑎𝑥(𝑝,𝑞)

𝑖=1

< 1 

GARCH (1, 1) model is also given below: 

𝜎𝑡
2 = 𝛼0 + 𝛼1𝜀𝑡−1

2 + 𝛽1𝜎𝑡−1
2                                                                                                    (10) 

0 ≤ 𝛼1𝛽1 ≤ 1, ( 𝛼1 + 𝛽1) < 1 

The persistence of the conditional variance (𝜎𝑡
2) is captured by 𝛼 + 𝛽 and covariance 

stationarity requires that  𝛼 + 𝛽 < 1. 

The Exponential GARCH Model 

In the basic GARCH model, since only squared residuals 𝜀𝑡−1
2  enter the conditional variance 

equation, the signs of the residuals or shocks have no effect on conditional volatility. However, 

a stylized fact of financial volatility is that bad news (negative shocks) tends to have a larger 

impact on volatility than good news (positive shocks). An EGARCH (p, q) model can be 

written as: 

𝐼𝑛(𝜎𝑡
2) = 𝛼0 + ∑ 𝛼1

𝑝
𝑖=1 |

𝜀𝑡−𝑖

𝜎𝑡−𝑖
−  ∫

2

𝜋
| + ∑ 𝛽𝑗 𝑙𝑜𝑔(𝜎𝑡−𝑗

2 )𝑞
𝑗=1 + ∑ 𝛾𝑘 |

𝜀𝑡−𝑘

𝜎𝑡−𝑘
|𝑟

𝑘=1                      (11) 

EGARCH (1, 1) is given by: 

𝐼𝑛(𝜎𝑡
2) = 𝛼0 + 𝛼 |

𝜀𝑡−1

𝜎𝑡−1
−  ∫

2

𝜋
| + 𝛽𝑙𝑜𝑔(𝜎𝑡−1

2 ) + 𝛾 |
𝜀𝑡−𝑘

𝜎𝑡−𝑘
|                                                   (12) 

where 𝛼0, 𝛼𝑖, 𝛽𝑗 , 𝑎𝑛𝑑  𝛾𝑘 are constant parameters. Note that when 𝜀𝑡−1 is positive (“good 

news”), the total effect of 𝜀𝑡−𝑖 is 1 +
𝛾𝑖

𝜀𝑡−𝑖
, while when the 𝜀𝑡−𝑖 is negative (“bad news”), the 

total effect of 𝜀𝑡−𝑖 is  1 −
𝛾𝑖

𝜀𝑡−𝑖
 . The EGARCH is the covariance stationary provided 

∑ 𝛽𝑗 < 1.𝑞
𝑗=1    
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The Threshold GARCH (TGARCH) Model 

Another volatility model commonly used to handle leverage effects is the threshold GARCH 

(TGARCH) model. In the TGARCH (1, 1) model, the specification of the conditional variance 

is 

𝜎𝑡
2 = 𝛼0 + 𝛼1𝜀𝑡−1

2 + 𝛾𝑑𝑡−1𝜀𝑡−1
2 + 𝛽1𝜎𝑡−1

2                                                                         (13) 

where 𝑑𝑡−1 is a dummy variable, that is, 𝑑𝑡−1 = {1      𝑖𝑓  𝜀𝑡−1  < 0,   𝑏𝑎𝑑 𝑛𝑒𝑤𝑠 0    𝑖𝑓 𝜀𝑡−1  ≥
0,   𝑔𝑜𝑜𝑑 𝑛𝑒𝑤𝑠  

The coefficient 𝛾 is known as the asymmetry or leverage term. When 𝛾 = 0, the model 

collapses to the standard GARCH forms. Otherwise, when the shock is positive (i.e., good 

news), the effect on volatility is 𝛼1, but when the news is negative (i.e., bad news), the effect 

on volatility is 𝛼1 + 𝛾. Hence, if 𝛾 is significant and positive, negative shocks have a larger 

effect on 𝜎𝑡
2 than positive shocks. The general model for TGARCH (p, q) is as given below: 

𝜎𝑡
2 = 𝛼0 + ∑ (𝛼𝑖 + 𝛾𝑖𝑑𝑡−1)𝜀𝑡−1

2𝑞
𝑖=1 + ∑ 𝛽𝑗𝜎𝑡−𝑗

2𝑝
𝑖=1                                                            (14) 

ARCH-LM Test 

The ARCH-LM test proposed by Engle was used to test for the presence of conditional 

heteroscedasticity in the model residuals. The test procedure is as follows: 

𝑯𝟎: There is no heteroscedasticity in the model residuals 

𝑯𝟏: There is heteroscedasticity in the model residuals 

The test statistics is  

𝐿𝑀 = 𝑛𝑅2 

where 𝑛 is the number of observations and 𝑅2 is the coefficient of determination of the auxiliary 

regression. 

𝑒𝑡
2 = 𝛽0 + 𝛽1𝑒𝑡−1

2 +𝛽2𝑒𝑡−2
2 +…+𝛽𝑞𝑒𝑡−𝑞

2 + 𝑣𝑡                                                                       (15) 

where 𝑒𝑡 is the residual. The null hypothesis is rejected when the p-value is less than the level 

of significance and the conclusion is that there is heteroscedasticity. 
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ANALYSIS AND RESULTS 

Table 4.1 below shows the summary of the descriptive statistics of the Naira to Dollar exchange 

rate returns. 

 Table 4.1:  Descriptive Statistics for Exchange Rate Return Series                      

Mean 351.82 

Skewness -0.512 

Kurtosis 10.59 

Jarque-Bera 2674.97 

Probability 0.00 

              

 

 Fig 4.1: Time series plot of exchange rate in Nigeria  

Figure 4.1 shows volatility clustering, i.e., periods of calm and periods of high volatility. The 

plot also indicates that some periods are more clustered than others.  

Fitting the GARCH models 

From Table 4.2, the ADF test was employed to affirm the stationarity of the returns. The tests 

performed with constant, and constant with trend, both affirm that the values were stationary. 

Table 4.2: Augmented Dickey-Fuller Test 

 t-Statistic Prob. 

Augmented Dickey-Fuller test statistic -14.68612 0.0000 

Test Critical Values:   1%     level 

                                  5%     level 

                                 10%    level 

-3.436171 

-2.863998 

-2.568130 
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Table 4.3: Selecting an Appropriate Mean Equation 

ARM

A (p, 

q) 

ARMA 

(1,1) 

ARMA 

(1,2) 

ARM

A 

(1,3) 

ARM

A 

(2,1) 

ARM

A 

(2,2) 

ARM

A 

(2,3) 

ARM

A 

(3,1) 

ARM

A 

(3,2) 

ARM

A 

(3,3) 

AIC 6.9798 7.2310 7.2295 7.2006 7.1461 7.3775 7.4005 7.4449 7.2386 

SIC 6.9980 7.2493 7.2478 7.2188 7.1644 7.3934 7.4188 7.4632 7.2569 

 

Several mean equations were fitted to the returns and the ARMA (1, 1) was selected as the best 

mean equation based on the AIC and SIC, as shown in Table 4.3. 

Table 4.4: Heteroscedasticity Test: ARCH LM Test 

F-Statistic              35.6429   Prob.F(1,1092)           0.0000 

Obs  R-Squared    34.5795   Prob. Chi-Square(1)  0.0000 

 

The ARCH-LM test shown in Table 4.4 was used to test for the presence of ARCH effects.  

Table 4.5: Test of Heteroscedasticity- Ljung Box Test 

Lags 6 12 18 24 36 

Test statistic 139.41 154.59 170.09 182.99 209.96 

p-value 0.000 0.000 0.000 0.000 0.000 

 

The Ljung Box test results shown in Table 4.5 were used to test for the presence of ARCH 

effects. The result revealed that there was an ARCH effect in the residual of the ARMA model. 

  Table 4.6: Selecting the Best ARCH Model  

MODEL AIC SIC 

ARCH(1) 3.1937 3.2211 

ARCH(2) 3.6619 3.3981 

ARCH(3) 3.1551 3.1916 

Several ARCH models were estimated and the best model was selected based on the AIC and 

the SIC, as shown in Table 4.6. ARCH (3) has the lowest AIC and SIC values of (3.1551) and 

(3.1916) respectively. 

Equation 3.8 is the ARMA (1, 1) – ARCH (3) model. 

𝑦𝑡 = 359 + 0.9999𝑡−1 + 𝜀𝑡 − 0.5118𝜀𝑡−1 

 𝜎𝑡
2 = 0.5058 + 0.8886𝜀𝑡−1

2 + 0.5607𝜀𝑡−2
2 + 0.3857𝜀𝑡−3

2 , 𝜀𝑡 = 𝜎𝑡𝜖𝑡 
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 Table 4.7: Estimates of the Best GARCH Model 

GARCH(p,q)  (1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3) 

AIC 6.760 6.753 6.774 6.724 5.904 5.952 5.906 6.150 7.364 

SIC 6.788 6.785 6.810 6.756 5.940 5.993 5.943 6.191 7.410 

 

Several GARCH models were estimated and the best model selected as shown in Table 4.7 was 

the GARCH (2,2), which has the smallest AIC and SIC values of 5.9039 and 5.9404 

respectively and hence is the most appropriate  among the GARCH(p, q) models.          

Equation 3.9 is the ARMA (1, 1) – GARCH (2, 2) model. 

𝑦𝑡 = 345.0156 + 0.9498𝑦𝑡−1 + 𝜀𝑡 + 0.0202 

𝜎𝑡
2 = 0.2524 + 0.2115𝜀𝑡−1

2 + 16.9448𝜀𝑡−2
2 − 0.0000207𝜎𝑡−1

2 − 0.0000132𝜎𝑡−2
2 ,    

Table 4.8: Estimating the Parameters of EGARCH (p, q) Model  

EGARCH (p,q) (1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3) 

AIC 6.658 5.728 5.509 6.222 6.019 5.931 5.994 -24.320 6.676 

SIC 6.690 5.770 5.550 6.259 6.060 5.977 6.035 -24.274 6.806 

 

Table 4.8 displays several EGARCH models fitted to the returns. EGARCH (3, 2) was the best 

among the EGARCH models as it has the least values of AIC and SIC. From Equation 3.11, 

the ARMA (1,1) – EGARCH(3,2) model can be written as: 

𝑦𝑡 = 360.0061 − 0.9485𝑦𝑡−1 + 5310083𝜀𝑡−1 

𝐼𝑛(𝜎𝑡
2) = −9.0273 + 2.5111 |

𝜀𝑡−1

𝜎𝑡−1
− ∫

2

𝜋
| + 1.8373 |

𝜀𝑡−2

𝜎𝑡−2
− ∫

2

𝜋
| + 0.4419 |

𝜀𝑡−3

𝜎𝑡−3
− ∫

2

𝜋
|

+ 0.0052 |
𝜀𝑡−1

𝜎𝑡−1
| + 0.1703 𝑙𝑜𝑔 (𝜎𝑡−1

2 ) + 0.6248 𝑙𝑜𝑔 (𝜎𝑡−2
2 ), 𝜀𝑡 = 𝜎𝑡𝜖𝑡 

 

Table 4.9: Selecting the Best TGARCH Model 

TGARCH(p,q) (1,1) (1, 2) (1, 3) (2, 1) (2, 2) (2, 3) (3, 1) (3, 2) (3, 3) 

AIC 6.113 6.114 6.769 6.722 6.697 6.758 6.772 6.236 6.756 

SIC 6.145 6.150 6.810 6.75 6.738 6.804 6.813 6.281 6.806 

 

Table 4.10 displays the various TGARCH models fitted to the returns. From Table 4.9, 

TGARCH (1, 1) was the best among the TGARCH models since it has the least values of AIC 

and SIC. Equation 3.13, the ARMA (1, 1) – TGARCH (1, 1) model can be written as:   

𝑦𝑡 = 339.6241 + 0.9904𝑦𝑡−1 + 𝜀𝑡 − 0.5670𝜀𝑡−1  

𝜎𝑡
2 = 0.7520 + 66.0457𝜀𝑡−1

2 − 60.6059𝑑𝑡−1𝜀𝑡−1
2 + 0.0023𝜎𝑡−1

2  
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    Table 4.10: Heteroscedasticity Test: ARCH LM for ARCH (3) 

F- Statistic                   0.020242            Prob. F                          1.0000 

𝑂𝑏𝑠∗𝑅 − 𝑆𝑞𝑢𝑎𝑟𝑒𝑑        0.204452             Prob. Chi-Square           1.0000 

 

Table 4.10 displays the results of Lagrange Multiplier test for ARCH effects and the null 

hypothesis of no ARCH effects cannot be rejected since the p-value was greater than 5%. There 

are no additional ARCH effects in the residual of ARCH (3). 

    Table 4.11: Heteroscedasticity Test: ARCH LM for GARCH (2, 2) 

F-Statistic                      0.000516             Probability           0.9819 

𝑂𝑏𝑠∗ R-Square            0.000517               Probability          0.9819 

 

Table 4.11 displays the results of Lagrange Multiplier test for ARCH effects in the GARCH 

(2, 2) model. The null hypothesis of no ARCH effects cannot be rejected since the P-values are 

greater than 5%. There are no additional ARCH effects in the residual of GARCH (2, 2). 

  Table 4.12: Heteroscedasticity Test: ARCH LM for EGARCH (3, 2) 

F-Statistic                      0.652760               Probability           0.4193 

𝑂𝑏𝑠∗ R-Square            0.653565                Probability          0.4188 

 

Table 4.12 displays the results of the Lagrange Multiplier test for ARCH effects in the 

EGARCH (3, 2) model. The null hypothesis of no ARCH effects cannot be rejected since the 

p-values are greater than 5%. There are no additional ARCH effects in the residual of EGARCH 

(3, 2). 

     Table 4.13: Heteroscedasticity Test: ARCH LM for TGARCH (1, 1) 

F-Statistic                      0.035371              Probability           0.8509 

𝑂𝑏𝑠∗ R-Square            0.035434               Probability          0.8507 

 

Table 4.13 displays the results of the Lagrange Multiplier test for ARCH effects in the 

EGARCH (3, 2) model. The null hypothesis of no ARCH effects cannot be rejected since the 

p-values are greater than 5%. There are therefore no additional ARCH effects in the residual 

of TGARCH (1, 1). 

  Table 4.14: Selecting the Most Appropriate Model  

Model ARCH(3) GARCH(2, 2) EGARCH(3, 2) TGARCH(1, 1) 

AIC 3.1551 5.9039 -24.3197** 6.1128 

SIC 3.3981 5.9404 -24.2741** 6.1448 
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The diagnosing test for all fitted models revealed that all the models fitted were adequate. A 

complete analysis of all the models revealed that ARMA (1,1) – EGARCH(3,2) was the best 

model, as shown in Table 4.14, since it has the least values of the AIC and SIC. 

 

SUMMARIES OF FINDINGS  

The exchange rate is negatively skewed, i.e., -0.5180, which clearly indicates lack of symmetry 

in the returns. In a normally distributed series, skewness must be zero (0) and kurtosis must be 

around 3. From our results, the skewness is -0.5180 (i.e., negatively skewed), which implies 

that the distribution has a long left tail and a deviation from normality. In addition, the exchange 

rate returns are leptokurtic caused by large kurtosis statistics of 10.5866 that exceeds the normal 

value of 3, indicating that the return is fat tailed. Regarding Jarque and Bera test for normality, 

it is consistent with the outcome provided by both statistics of kurtosis and skewness, since the 

JB test is significant at 1%, 5% and 10%, i.e., JB test statistic is 2674.965 with an associated 

p-value of zero, as shown in Table 4.1. This means we reject the null hypothesis and accept the 

alternative hypothesis which states that returns are not normally distributed. A check for 

stationarity was done using the Augmented Dickey Fuller test in Table 4.2, and the test 

confirmed that the data were stationary. Consequently, all the pre-mentioned statistical 

analyses give more support to the suitability of applying ARCH/GARCH model for our data, 

since the selected observations can be described as leptokurtic, fat tailed, stationary and not 

normally distributed. 

The results from the GARCH (2,2) revealed that the volatility in the current day exchange rate 

is explained by approximately 78% of the volatility in the previous day’s exchange rate. The 

sum of the ARCH term and the GARCH term is greater than unity. This shows that the 

conditional variance is unstable and the entire process is non-stationary. This indicates over 

persistence of shocks in the exchange rate which can eventually explode to infinity. Exchange 

rate with explosive shock is not conducive for long-term investments as investors can lose or 

gain indefinitely. 

The results from the EGARCH (3, 2) revealed that the volatility in the current day exchange 

rate is explained by 100% of the volatility in the previous day’s exchange rate. EGARCH (3,2) 

was not covariance stationary since the sum of the GARCH parameters was more than one. 

The parameters of the EGARCH (3,2) were all significant at the 1%, 5% and 10% significance 

level, except the leverage parameter. The significance of the ARCH and GARCH parameters 

in the EGARCH model indicates that previous period squared residual and previous period 

variance of the residual have an influence on current variance of the residuals. There was the 

existence of asymmetric effects on the volatility of the daily exchange rate returns. However, 

there was no evidence of leverage effects in the asymmetric model as the leverage parameter 

was positive. The positive and insignificant leverage effect indicates that positive shocks (good 

news) increase volatility more than negative shocks (bad news). 

The results from the TGARCH (1, 1) revealed that the volatility in the current day exchange 

rate is explained by approximately 84% of the volatility in the previous day’s exchange rate. 

TGARCH (1,1) was not covariance stationary since the sum of the GARCH parameters was 

more than one. This implies that the shocks to volatility are very high and will remain so forever 

as the variances are not stationary. In summary, the Nigerian exchange rate market is 
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characterized by high persistent volatility. The parameters of the mean equation were 

significant at the 1%, 5% and 10% significant levels. In the variance equation, all the 

parameters were significant at the 1% significance level except the GARCH term. This means 

that it adds little explanatory power to the model. The asymmetric (leverage) parameter was 

significant but negative, indicating the absence of leverage effects. Leverage effects are said to 

exist in the TGARCH model if the leverage parameters are significant and positive. 

The selected model EGARCH (3,2) was diagnosed using the Univariate LM test and it was 

found to be adequate.  

 

CONCLUSION 

The conclusion of this study is as stated below: 

The exchange rate volatility between the Nigeria Naira and the US Dollar is highly persistent 

as the sum of the ARCH and the GARCH models were greater than one. 

Based on these studies, the best model for modeling exchange rate volatility between Naira and 

Dollar for the period covered is the EGARCH (3, 2). 

Positive shocks increased volatility than the negative effects of equal magnitude. 

 

RECOMMENDATIONS    

This study focused on a few GARCH models in modeling exchange rate returns. However, 

after almost three decades, different extensions of the ARCH models have been proposed. 

These include multivariate ARCH, GARCH-in-mean (GARCH-M) models, and Integrated 

Generalized Autoregressive Conditional Heteroscedasticity (IGARCH) models.  

It is therefore recommended that further expository studies on modeling these extensions 

should be carried out. 

It is also recommended that the central bank should put in place long-term measures to stabilize 

the Naira since weakening the Naira increases the uncertainty in the exchange market than 

strengthening the Naira, as depicted by the EGARCH and the TGARCH models.  
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