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ABSTRACT: The need to provide an acceptable model and 

forecast for stock prices of solid minerals in Nigeria is valuable 

for investors and analysts. It will empower them to better 

understand and manage the associated risks in stock price 

movements. This study aimed to model and forecast the volatility 

of stock prices of solid minerals, like gold, tin, and zinc. The data 

utilized in this study was sourced from the Central Bank of Nigeria 

and Nigeria Stock Exchange. It is the monthly stock prices for 

selected solid minerals like; Gold, Tin, and Zinc. Multivariate 

GARCH models such as the VECH, BEKK, Diagonal VECH and 

Diagonal BEKK model were employed to provide the needed 

multivariate volatility modeling. The findings revealed that, on 

average, investors experienced positive returns, and a non-

symmetric distribution. It was also discovered that intricate 

patterns exist within the volatility dynamics of these stocks. 

Volatility clustering, ARCH effects, and the persistence of 

volatility shocks over time was identified, emphasizing the non-

random nature of stock returns volatility. It is recommended that 

investors and analysts carefully consider the implications of 

volatility clustering, ARCH effects, and persistence in volatility 

shocks when making investment decisions in the stock market, 

particularly regarding gold, tin, and zinc stocks. 

KEYWORDS: ARCH, Autoregression, Bekk-Garch, GARCH, 

Heteroskedastic, IGARCH, Skewness, Stationarity, VECH. 
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INTRODUCTION 

Nigeria's abundant supply of solid minerals, such as gold, tin, and zinc, has long served as the 

foundation of the country's economy. These minerals are essential to the country's economy, 

making a substantial contribution to both its GDP and foreign exchange profits. Nigeria's 

economic development has been greatly aided by the exploration, mining, and trading of these 

minerals, which have created jobs and promoted industrial expansion. Like any market-driven 

industry, the solid minerals sector is impacted by a number of domestic and international 

economic factors that affect commodity prices. For investors, legislators, and market players 

looking to comprehend and control the risks connected to their investments in this industry, the 

volatility of commodity prices presents difficulties. Since the stock prices of businesses 

engaged in the mining and processing of solid minerals are especially vulnerable to fluctuations 

in commodity prices, it is essential to precisely model and predict the volatility of these stock 

prices. The multivariate volatility modeling of stock prices for a few Nigerian solid minerals, 

like gold, tin, and zinc is the main emphasis of this study. The chosen minerals are important 

parts of the nation's mineral riches, and a wide range of factors, including macroeconomic 

indicators, geopolitical developments, global demand, and technical improvements, affect their 

prices. This study attempts to shed light on the dynamic nature of stock price movements within 

the solid minerals industry by using advanced statistical approaches for multivariate volatility 

modeling. There are inherent risks in Nigeria's solid minerals business, and the stock prices of 

companies in this sector show complicated patterns of volatility. For investors and politicians 

looking to make well-informed decisions, it is essential to comprehend and measure this 

volatility. Nevertheless, little study has been done on stock price volatility in Nigeria's solid 

minerals industry, and there aren't many thorough multivariate models that take into account 

the dynamics of several minerals at once. Therefore, the lack of a reliable multivariate volatility 

model for stock prices in the Nigerian solid minerals sector specifically for gold, tin, and zinc 

is addressed in this study. Creating such a model is essential to enhancing risk management 

tactics, supporting investment choices, and fostering a more robust and stable Nigerian solid 

minerals market.  

In the univariate example, the generalized ARCH (GARCH) and autoregressive conditional 

heteroscedasticity (ARCH) models were effective in capturing the time-varying variances of 

economic data. Many academics have been inspired by this to expand these models to the 

multivariate level. There are numerous significant financial uses for multivariate volatilities. 

They can be used to calculate the value at risk of a financial position made up of several assets, 

and they are crucial in asset allocation and portfolio selection (Tsay, 2005). Thus, multivariate 

GARCH (MGARCH) models have a wide range of applications. Portfolio optimization 

(Kroner, 1991), asset pricing (Herwartz, 1998) and derivatives, value at Risk computation 

(Laurent, 2004), futures hedging Park (995), volatility transmitting (Karolyi, 1995), asset 

allocation, systemic risk estimation (Schröder, 2003), estimation of the leverage effect (De 

Goeij, 2004; Kroner, 1998), estimation of the volatility impulse response function (Hafner, 

2006; Elder, 2003; nonlinear programming Leyffer, 2003), hedging the currency exposure risk 

(Valiani, 2004); calculating the minimum capital risk requirements for an asset portfolio 

(Brooks et al., 2002); determining misspecification tests for MGARCH models (Tse & Tsui, 

1999); modeling of the changing variance structure in an exchange rate regime (Bollerslev, 

1990); and using MGARCH models in the analysis of individual financial markets (Minović, 

2007b).  
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This paper aims to present the fundamental idea of multivariate volatility (GARCH) modeling, 

it also provides an overview of these models' theory.  

 

LITERATURE REVIEW 

Over the past 20 years, there has been a significant evolution in the modeling and explanation 

of the dynamics of time-series from the financial industry since Eagle's (1982) seminar work 

on Autoregressive Conditional Heteroscedasticity (ARCH) models. In addition to the statistical 

advantages of accounting for conditional heteroscedasticity and second order temporal 

persistence in asset return series, it is very practical to model the conditional correlation across 

assets and across sectors over time. A substantial body of literature on MGARCH models has 

developed over the past 20 years, with variations in the conditional variance-covariance matrix 

specifications (Silbennoinen et al., 2008) and conditional volatility specifications (of which a 

substantial body of literature has evolved (Bollerslev et al., 1988). Bollerslev et al. (1988) 

presented the VECH model, the first MGARCH model that explicitly measures the conditional 

covariance matrix between series. As the returns dimension increases, a significant number of 

parameters must be evaluated because the VECH approach is essentially a direct generalization 

of the univariate approach. The Constant Conditional Correlation (CCC) model and its later 

variations, as well as limited versions of Engle & Kroner's (1995) BEKK-model (Engle et al., 

1995), which also explicitly guarantees positive definiteness of the covariance matrix, were the 

results of later attempts to make the models more parsimonious. In order to include leverage 

effects in the underlying correlation structure, Cappiello et al. (2006) extended the constancy 

of the correlation structure of the CCC model to the Asymmetric-DCC (ADCC) model, 

whereas Engle (2002) subsequently relaxed it with the Dynamic Conditional Correlation 

(DCC) version. These models have been empirically employed by numerous academics to 

examine return volatility, with one model outperforming the other.  

Bala and Takimoto (2017) investigated stock return volatility spillovers in both developed and 

emerging economies using the Multivariate GARCH model and its variations. They examined 

how the global financial crisis of 2007–2009 affected stock market dynamics and adjusted 

BEKK-GARCH-type models by adding financial crisis dummies to ascertain how they affected 

volatility and spillovers. They discovered that, in comparison to other models, the DCC-with-

skewed-t density model has a better diagnosis. This is due to the fact that financial returns 

frequently exhibit skewed features and fat tails. King and Botha (2014) investigated whether 

using Markov-switching models to account for structural changes in the conditional variance 

process improves estimates and forecasts of stock return volatility compared to the more 

traditional single-state (G)ARCH models, both within and across a subset of African markets 

for the years 2002–2012. They found that although some Markov-switching models have been 

shown to outperform models that incorporate GARCH effects in terms of forecasting and risk-

adjusted returns, the simpler Markov-switching models' incapacity to adequately account for 

heteroscedasticity in the data continues to be an issue.  

Both the study by Türkyılmaz and Balıbey (2014) and the study by Ijumba (2013) on the 

Multivariate GARCH models indicated that there was a persistence of volatility among the 

returns of the BRICS stock market. Chen and Zapata (2015) used BEKK-GARCH models to 

simulate volatility and spillover effects. The findings showed that the volatility in China's price 

hogs is explained by own-price volatility and prior unforeseen occurrences, whereas the 
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volatility in America is explained by its events. Before the consequences of the global financial 

crisis reached Turkey, the BEKK-GARCH model was used in the work by Türkyılmaz and 

Balıbey (2014) to create the conditional variances of monthly stock exchange prices, exchange 

rates, and interest rates for Turkey. The sample period was 2002:M1 to 2009:M1. The empirical 

findings show that these three financial sectors are volatile, which is a sign of strong shock 

transmission. Sheu and Cheng (2011) examined and compared the effects of volatility for the 

US and Chinese stock markets on Hong Kong and Taiwan, respectively, using the VAR and 

the Multivariate GARCH model for two distinct time periods, 1996 to 2005 and 2006 to 2009. 

It is discovered that the Chinese stock market is autonomous and that its interactions with 

foreign markets are still negligible.  

Bonga-Bonga and Nleya (2016) examined the performance of the asymmetric DCC (ADCC), 

dynamic conditional correlation (DCC), and constant conditional correlation (CCC) models in 

estimating the portfolio at risk in the BRICS nations. The study used the root mean square 

error, average deviations, and quadratic probability function score to measure performance 

error. The findings demonstrated that a portfolio can help reduce BRICS losses. Nortey et al. 

(2015) used a dataset of Ghana from January 1990 to December 2013 to examine the volatility 

and conditional link among inflation rate, currency rate, and interest rates as well as to build a 

model of DCC and BEKK. The study's findings demonstrate that the DCC model is strong at 

modeling the unconditional correlation and conditional of the exchange, interest rates, and 

inflation, respectively, but the BEKK model is strong at modeling and forecasting the volatility 

of the exchange rate, inflation rate, and interest rate. Gardebroek et al. (2013) used a 

Multivariate GARCH technique on a daily, weekly, and monthly basis encompassing 1998 to 

2012 in order to evaluate the interdependence and dynamics of volatility in the corn, wheat, 

and soybean markets in the United States. The findings showed that there is weekly volatility 

across these commodities and that there is no cross-border reliance amongst markets. Hartman 

and Sedlak (2013) investigated the performance of the two Multivariate GARCH models, 

BEKK and DCC, using ten-year exchange rate data. The OLS regression, MAE, and RMSE 

are used to gauge performance. It was determined from the data that the BEKK model 

outperformed the DCC model. In order to evaluate the relationship between exchange rates and 

stock market returns, Tastan (2006) used the Multivariate GARCH model. Daily data on the 

Euro-Dollar exchange rate, the Dow Jones Industrial Average, and the S$P 500 index from the 

US economy were the series used. The study discovered that this shock determines the 

conditional volatility of every variable. Chen and Zapata (2015) used data from the June 1996–

December 2013 sample to model volatility and spillover effects using the BEKK-GARCH 

model. The findings show that whereas American volatility is explained by its events, Chinese 

price hog volatility is documented to be explained by own-price volatility and past unforeseen 

events. In order to investigate and compare the impacts of two financial crises (the Asian 

Financial Crisis of 1997 and the Subprime Financial Crisis of 2007 to 2010), Chen and Zapata 

(2015) looked at the short-, short-, and long-term relationships between the equity markets in 

China and the US. Additionally, the volatility spill-over effects are examined by the estimation 

of the BEKK-GARCH model. The findings indicate that there is no cointegration between the 

mainland stock indexes and the US and Hong Kong stock indices. Nonetheless, there is short-

term volatility and spillover effects in the various equity markets.  

The multivariate GARCH model was added to the fractionally integrated VECM model by Yi 

et al. (2009) in order to concurrently disclose the return transmission and volatility spillover 

between market return series. The empirical findings demonstrated that the Chinese market is 
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more closely linked to the Hong Kong market than the U.S. market, and that there is a fractional 

integration. In addition to studying the empirical application of estimating applications in the 

theoretical framework of GARCH models, Baybogan (2013) assessed the volatility in financial 

time series econometrics. The DCC-GARCH and BEKK-GARCH models are both examined. 

In order to estimate the returns of the expanding pension funds, Kvasnakova (2009) used both 

the copula and the multivariate GARCH model. The two models were once more used in the 

effort to estimate the VaR and compare them. The findings demonstrated that the copula model 

yields superior VaR estimation. Itotenaan et al. (2013) looked at the Nigerian market to see if 

there was a connection between stock market performance and oil prices. The enhanced 

Dickey-Fuller test, Johansen's cointegration model, the Vector autoregression estimation 

model, and the Vector error correction model were among the empirical tests used in the 

research work. The results showed that changes in the price of oil play a key role in explaining 

movements in share prices. The results also indicate that there is a strong correlation between 

oil prices and stock performance. Irandoost et al. (2013) conducted a study that examined 

dividend policy and its influence on stock volatility and investing choices for companies listed 

on the Tehran Stock Exchange. Multiple regressions and correlation analysis were used to 

examine and assess the hypotheses in this study, which included a sample of 65 firms and five 

years of data from 2007 to 2012. The study's findings demonstrated that dividend policies have 

a major short-term influence on price volatility. Dividend policy, however, has never had an 

impact on volatility or cash and cash accrual investment choices.  

Kolawole and Olalekan (2010) looked into how the Nigerian market was affected by 

fluctuations in exchange rates. The study's findings demonstrated that the exchange rate 

volatility brought on by the GARCH process had a more detrimental effect on the Nigerian 

market. However, the results showed no long-term relationship between market capitalization 

and inflation or interest rates. This resulted from the government's substantial involvement in 

the market. To lessen exchange rate volatility and increase the stock market's reach, they 

recommended the formation of a coordinated scale and monetary strategy. Adrian (2008) 

examined the pricing of volatility risk by separating the equities market's inherent instability 

into short- and long-term components. According to the study, risk prices are adversely 

significant for both volatility sections, meaning that investors pay insurance premiums to lessen 

the likelihood of instability. The study also discovered that the short run component, which 

was interpreted as a tightness constraint measure, accounts for the risk of market skewness. 

The long-term section included the business cycle risk. According to Asteriou and Hall (2011), 

recent advancements in financial econometrics have prompted the use of methods, models, and 

processes that can assist investors in navigating risk (uncertainty) and expected return. While 

low volatility results in lower risk, higher volatility may yield a larger predicted return than 

others. The ARCH/GARCH family of models' illustrations are necessary for addressing the 

volatility (variance) of the series. Demers and Vega (2008) measured stock market volatility 

using the EGARCH model and discovered that negative shocks, or bad news, had a greater 

impact on volatility than positive shocks, or good news. According to Krishnamurti's (2000) 

paper, "Competition, Liquidity, and Volatility: A Comparative Study of the Bombay Stock 

Exchange and National Stock Exchange," India has two major stock exchanges: the BSE and 

the NSE. He noted that the two exchanges differ significantly in terms of ownership structure, 

internal control systems, geographic reach, and institutionalized risk management facilities. 

When Krishnamurti (2000) was investigating whether the notable structural differences 

between these stock exchanges contribute to variations in observed measures of market quality, 

he employed a paired comparison approach and documented significant differences in price 
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volatility and liquidity between the two markets. He discovered that the NSE is higher in his 

department on numerous counts. Additionally, NSE's surveillance systems have a superior 

reputation. The BSE has a part-order-driven system, whereas the NSE has a fully order-driven 

system. Both exchanges have tools for price stabilization. The cement industry's profitability 

was compared by Bavaria (2004). He asserts that the rise in the profit percentage is 

proportionate to the rise in average interval profit. Thus, there is a direct correlation between 

Net Profit and Interval Measure in this case as well. The study concludes that the Eastern 

Region had the highest return on net capital employed, whereas the other regions showed a 

negative outcome.  

 

MATERIALS AND METHODS 

Source of Data 

The data for this study is sourced from the Central Bank of Nigeria and Nigeria Stock 

Exchange. They provide monthly stock prices for selected solid minerals like gold, tin, and 

zinc. The dataset includes relevant information on stock prices, trading volumes, and other 

relevant financial indicators. Special attention is given to ensuring data consistency, 

completeness, and accuracy.  

Multivariate Volatility Model Specification 

To describe the volatility of multiple asset returns, numerous researches have extended the 

univariate generalized autoregressive conditional heteroscedastic (GARCH) model to the 

multivariate case in recent years. There are numerous significant uses for multivariate volatility 

models in statistics and finance. The GARCH model was established by Bollerslev and Taylor 

who extended the ARCH model by allowing the past conditional variance to be a linear 

function of p lagged conditional variances in addition to q past squared errors. Asteriou (2006) 

stated that the simplest form of the GARCH (p,q) model is the GARCH (1,1) model, which 

changes p = 0  and reduces the model to ARCH (q). The variance equation has the form:  

                            ttt uRLnaRLn  1

' )()( 
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Where, 𝜎𝑡
2 is the conditional variance, q is the order of the ARCH terms µ2, p is the order of 

the GARCH terms 𝜎2, ut is the disturbance term, 𝜔 is the constant term and 𝛽0> 0; 𝛽𝑖> 0; i = 

1,…, q;  j = 1,...,p 

The ARCH term is the lag of the squared residual from the mean equation. It will tell if 

volatility reacts to market movements i.e. if volatility from the previous period affects volatility 

in the current period. The GARCH parameter is the forecasted variance from the previous 

period. The sum of the ARCH and GARCH term will inform us if volatility shocks are 

persistent. If the sum is less than unity, the shocks would die out slowly, if not, it would die out 

quickly.  

The GARCH model is easy to estimate and specifically performs very well because it has only 

three unknown parameters, ω, α and β.   It simply illustrates that the conditional variance is 

allowed to depend on both q lags of the squared errors (residuals) and p lags of the conditional 



African Journal of Mathematics and Statistics Studies    

ISSN: 2689-5323    

Volume 8, Issue 2, 2025 (pp. 97-128) 

103  Article DOI: 10.52589/AJMSS-Y9OHHTF3 

   DOI URL: https://doi.org/10.52589/AJMSS-Y9OHHTF3 

www.abjournals.org 

variance. The above equation is a GARCH (1,1) model, , 𝜎𝑖
2is the conditional variance since is 

a one-period ahead estimate for the variance calculated based on past information thought 

relevant. The GARCH (1,1) model has the presence of (the first term in parentheses) a first-

order autoregressive GARCH term and (the second term in parentheses) a first-order moving 

average ARCH term. The GARCH model by forming a weighted function of the long-term 

average (the constant dependent on  ) is often interpreted in a financial context, where an 

agent or trader predicts this period’s variance 𝛼2
𝑖 the fitted variance from the GARCH 

term(𝛽𝜎𝑖−1
2 ), that is, the fitted variance from the model during the previous periods and 

information about volatility observed during the previous periods, in the ARCH term (𝛼𝜀𝑖−1
2 ). 

If the asset return was unexpected by large in either the upward or the downward direction, 

then the estimate of the variance for the next period is then increased by the trader. This model 

is also consistent with the volatility clustering often seen in financial return data, and large 

returns changes are likely to be followed by further large changes. In addition, the intention of 

higher-order GARCH models, denoted GARCH (p, q), can be estimated by choosing either p 

or q larger than 1, where p is the order of the moving average GARCH terms and q is the order 

of the autoregressive ARCH terms. The GARCH (p, q) model can be represented as follows:     

       







 
p

j

jtj

q

i

itit
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1
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               (3)   

Where: ω, α and β are parameters, the lag of the squared residual from the mean equation of 

the ARCH term is 
2

it
 The ARCH parameters correspondent is 𝛼𝑖, the lag of the squared 

residual from the mean equation of the GARCH term 𝛼2
𝑖−𝑗, the GARCH parameters 

correspondent is 𝛽𝑖.  For a GARCH (1,1) process, the variance can be calculated as, 
𝜔

1−𝛼−𝛽
, 

which requires 𝛼 + 𝛽 < 1. Otherwise, if 𝛼 + 𝛽 > 1, the study requires an Integrated 

Generalized Autoregressive Conditional Heteroskedastic (IGARCH) model (Hill, et al. 2011). 

A study by (Hamilton,1994) notes that the conditional of 𝜔, 𝛼 𝑎𝑛𝑑 𝛽 > 0 are sufficient but not 

necessary to ensure nonnegative of 𝜎2. For a GARCH (1,2) process, for example, the 

𝜎2coefficients are positive, provided that 𝜔 > 0, 𝛽 > 0 

and   𝛼0 + 𝛼1 > 0. Hamilton concludes that 𝛼1 could be negative as long as 𝛼1  is less than 𝛼0. 

The following is a description of the variance calculation.   

                                               𝜎𝑖
2 = 𝜔𝑖 − 𝛽 − 𝛼                                                                     (4) 

In the above equation, the mean is written as a function of exogenous variables with an error 

term. Since 𝜎𝑖
2 is the one-period ahead forecast variance based on past information, it is called 

the conditional variance. This variance can be calculated to describe uncertainty by the square 

root of the variance and is called the standard deviation (Adams et al., 2022).  This model 

specification performs very well usually and provides a framework that is more flexible to 

capture various dynamic structures of conditional variance. This is because the GARCH model 

incorporates the time-varying conditional variance and the covariance process. According to 

Knight and Satchell the GARCH model allows the distributions of both the conditional 

variance and the observed variable (unconditionally) to be computed numerically. The 

conditional variance of the time series will consequently rely on the squared residuals of the 

process, or the lagged innovation squared (Adams et al., 2023).  

The ARCH model created by Engle has limits, as stated by Pagan and Schwert. Their research 

verified that the GARCH model outperformed other approaches in terms of stock market 
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volatility. The GARCH and ARCH models are widely employed in many areas of 

econometrics, particularly in financial time series analysis, and they are adaptable enough to 

take into account changes in model specifications and requirements, according to surveys 

conducted by Bollerslev, Engle, and Nelson. According to an empirical study, GARCH (1,1) 

is the most widely used model for analyzing financial time series and is more economical than 

ARCH when it comes to predicting volatility in financial markets. In a similar vein, Hansen 

and Lunde's (2005) study investigated whether complex volatility models or parsimonious 

models are more effective at describing financial time series. In order to assess the one-day-

ahead conditional variance, they matched 330 ARCH-type models. The main finding for the 

exchange rate data was that one of the best-performing models is the GARCH (1,1). Following 

the description above, the current study uses the GARCH (1, 1) model and multi-factor 

regression to investigate the volatility dynamics of the financial time series. 

The core of this methodology lies in the specification and estimation of a multivariate volatility 

model to capture the joint dynamics of Gold, Tin, and Zinc stock prices. The model selected 

for this study is the Multivariate Generalized Autoregressive Conditional Heteroskedasticity 

(MGARCH) model. The MGARCH model is particularly suited for capturing the time-varying 

volatility and potential spillover effects among multiple financial time series. 

Multivariate time series, often the current value of a variable, depends not only on its past 

values but also on past and/or current values of other variables (Schmidt, 2005). Price 

movements in one market can spread easily and instantly to another market. Financial markets 

are more dependent on each other than ever before. Consequently, knowing how the markets 

are interrelated is of great importance in finance. For an investor or a financial institution 

holding multiple assets, the dynamic relationship between returns on the assets plays an 

important role in decision making (Tsay, 2005). Modeling of dynamic interdependent variables 

is done using multivariate time series. A multivariate time series )',...,( 21 tNttt rrrr   is a vector 

of N processes that have data available for the same moments in time (Schmidt, 2005). 

Multivariate time series ty  is weakly stationary if its first and second moments are time-

invariant. In particular, the mean vector and covariance matrix of a weakly stationary series is 

constant over time. For a weakly stationary time series, ,tr  we define its mean vector and 

covariance matrix as 

                µ = 𝐸 ( ty ) =
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Where the expectation is taken element by element over the joint distribution of ty . The mean 
  is an N-dimensional vector consisting of unconditional expectations of the components of

ty . The covariance matrix 0  is a  NN   matrix. The 
thi  diagonal element of 0  is the 
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variance of ity , whereas the  element of 0  is the covariance between ity  and jty
, and it is a 

function of k (Tsay, 2005). A dynamic model with time-varying means, variances, and 

covariances for the N  components of ty )',...,,( 21 Nttt yyy   is:  

                                    ttty   )(         (7) 

 Here,  is a finite vector of parameters, t (  ) is the conditional mean vector and t is an 

1×N  vector of shock, or innovation, of the series at time t  equal to:  

                                  ,)(2
1

ttt z 
         (8)    

where )(2
1

t is an NN   positive definite matrix. Furthermore, we assume the 1N  random 

vector tz  to have the following first two moments:  

                             ,0)( tzE  Nt IzVar )(          (9) 

where NI  is the identity matrix of order N .  

The conditional mean vector has the form:                 

                          )()/( 11 ttttt yEIyE                     (10)  

Where 1tI  is the information available at a time 1t , at least containing 
),...,( 21 tt yy
. To 

make this clear we calculate the conditional variance matrix of ty :             

t

tttt

tttttt

zVar

VaryVarIyVar











))((

)()()/(

2

1

2

1

1

111 

                 (11) 

Hence, 
2

1

tH  is any NN   positive definite matrix such that t  is the conditional variance 

matrix of ty . Both tH  and t  depend on the unknown parameter vector   , which can be split 

in most cases into two disjoint parts, one for t  and one for t  (Bauwens, 2005; Bauwens et 

al., 2006). Multivariate volatility modeling is concerned with the time evolution of t . We 

refer to a model for the { tH  } process as a volatility model for the return series ty  (Tsay, 

2005).      

The VECH model: 

The first MGARCH model was introduced by Bollerslev, Engle, and Wooldridge in 1988, 

which is called the VECH model. It is much more general compared to the subsequent 

formulations. In the VECH model, every conditional variance and covariance is a function of 
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all lagged conditional variances and covariance, as well as lagged squared returns and cross-

products of returns.      

The model can be expressed below: 

 

(12)              








 
p

j

jt

q

j

jtjtt HBvechAvechCHVEC
11

' )()()( 
               (13)     

where )(vech is an operator that stacks the columns of the lower triangular part of its argument 

square matrix, tH is the covariance matrix of the residuals, N  represents the number of 

variables, t  is the index of the 
tht  observation, C is an 12/)1( NN  vector,  jA

and jB
are 

jj BANNNN 2/)1(2/)1( 
parameter matrices and   is an 1N  vector of the errors.  

The condition for tH  to be positive definite for all t is not restrictive. In addition, the number 

of parameters equals 2/)1(()2/)1(()( 2  NNNNqp , which is large. Furthermore, It 

demands a large quantity of computation.  

The goal is to model the conditional variance-covariance matrix tH  which is an NN   non-

negative definite matrix. Different models for tH have been proposed over the last two decades 

(Wang, Yao, 2005). 

VECH is the operator that stacks a matrix as a column vector: 

                      
)',...,,,,,...,,()( 2221212111 tNtttNtttVEC           (14) 

    )()'()( BVECACABCVEC     (Bauwens, 2005)    (15) 

where iA  and jB
are parameter matrices containing 

2*)(N  parameters [with 

]2/)1([*  NNN , whereas the vector C contains 
*N  coefficients. We will assume that all 

Eigenvalues of the matrix 




p

j

j

q

i

i BA
11 have modulus smaller than one, in which case the 

vector process te  is covariance stationary with unconditional covariance matrix given by tH  

(Hafner & Herwartz, 2006). A potentially serious issue with the unrestricted VECH model 

described by equation (3.8) is that it requires the estimation of a large number of parameters. 

This over-parameterization led to the development of the simplified diagonal VEC model, by 

Bollerslev, Engle, and Wooldridge (1988), where the A  and B matrices are forced to be 

diagonal. The result is a reduction of the number of parameters in the variance and covariance 

equations to (16) for the trivariate case (Brooks et al., 2003). 
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The Diagonal VECH Model 

The Diagonal VECH model, the restricted version of VEC, was also proposed by Bollerslev, 

et al (1988). It assumes the jA
 and jB

 in Equation (16) are diagonal matrices, which makes it 

possible for tH  to be positive definite for all t . Also, the estimation process proceeds much 

more smoothly compared to the complete VEC model. However, the Diagonal VECH (DVEC) 

model with  2/)1()1(  NNqp  parameters is too restrictive since it does not take into 

account the interaction between different conditional variances and covariances. 

Because of the simplification that it provides, the diagonal VEC model is frequently used. Each 

of its variance- covariance terms is postulated to follow a GARCH-type equation. The model 

can be written as follows (Tse, Tsui,1999): 

            

ijjt

q

h

hij

p

h

jhththijijtij bac ,

11

,, 



   
    kji 1                      (16) 

where ijc
, hija

 and hijb
 are parameters.  

The diagonal VEC multivariate GARCH model could also be expressed as an infinite order 

multivariate ARCH model, where the covariance is expressed as a geometrically declining 

weighted average of past cross products of unexpected returns, with recent observations 

carrying higher weights. An alternative solution to the dimensionality problem would be to use 

orthogonal GARCH or factor GARCH models (Brooks, 2002). Now, the diagonal VECH 

model is in the form, 

    

                                  

(17) 
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i
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

  
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1

**

0 )'( 
       (18) 

Let us define the symmetric NN  matrices 
*

iA  and 
*

jB
as the matrices implied by the relations 

 ,)( *AvecdiagA  , and  ,)( *BvecdiagB   and 
*

0C  is given by )( *

0CvecC   (Bauwens et al.). 

The model which is represented by equation (18) is DVEC ),( sm ) model (Tsay, 2005). tH  

must be parameter matrices, and only the lower portions of these matrices need to be 

parameterized and estimated. For example, Silberberg and Pafka (2001) prove that a sufficient 

condition to ensure the positive definiteness of the covariance matrix tH  in Eq. (3.13) is that 

the constant term 
*

0C  is positive definite and all the other coefficient matrices, 
*

iA  and 
*

jB
, are 

positive semidefinite (De Goeijet al., 2004). Each element of tH  depends only on its own past 

value and the corresponding product term in 1'  tit  . That is, each element of a DVEC model 
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follows a GARCH (1,1) type model. The model is simple, but it may not produce a positive-

definite covariance matrix. Furthermore, the model does not allow for dynamic dependence 

between volatility series (Tsay, 2005). We can construct a scalar VEC model: aUA   and 

bUB  , where a and b are scalars and U is a matrix of ones (Bauwens, 2005). 

The disadvantage of the Diagonal VECH Model is that it cannot capture the interaction 

between different variances and covariances 

The BEKK model  

In order for an estimated multivariate GARCH model to be plausible, tH  is required to be 

positive definite for all values of the disturbances. Verifying that this holds is a non-trivial issue 

even for VEC or diagonal VEC models of moderate size. To circumvent this problem, Engle 

and Kroner (1995) proposed a quadratic formulation for the parameters that ensured positive 

definiteness. This became known as the BEKK model (Brooks et al., 2003). Its number of 

parameters grows linearly with the number of assets. Therefore, this model is relatively 

parsimonious and suitable for a large set of assets (De Goeij et al., 2004). The BEKK model is 

in the form: 
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The elements of the variance-covariance matrix tH , depend only on past values of itself and 

past values of  '

t , indicating that the variances depend solely on past squared residuals, and 

the covariances depend solely on past covariances. The conditional variance for each equation, 

ignoring the constant terms, may be expanded for the trivariate BEKK-GARCH(1,1) as 

follows: 
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ttttt hbhbbhbhbbhbb ,33
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33,233323,22
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23,133313,122313 222 
                (22) 

Equations (20), (21), and (22) show how shocks and volatility are transmitted across sectors 

and over time. 

The intercept matrix is decomposed into 
'

00CC  which is positive definite, where 0C    is a 33  

lower triangular matrix of constants, kiA  is a 33 square matrix that shows how conditional 

variances correlate with past squared errors. The elements of a matrix kiA  measures the effect 

of shocks or “news” on the conditional variance. and kiB  is a 33  square matrix which shows 

how past conditional variance affects the current level of conditional variance, and the degree 

of volatility persistence in conditional volatility among the sectors. Hence, kiAC ,0  and kiB  are  

parameter matrices. The BEKK representation in Equation (19) is a special case of Equation 

(18) (Hafner, Herwartz, 2006). Based on the symmetric parameterization of the model, tH  is 

almost surely positive definite provided that 
'

00 CC  is positive definite (Tsay, 2005). Engle 

and Kroner (1995) proved that the necessary condition for the covariance stationarity of the 

BEKK model is that the eigenvalues, that is the characteristic roots of   
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, should be less than one in absolute value. 

Hence, the process can still render stationary even if there exists an element with a value greater 

than one in the matrix. Obviously, this condition is different from the stationarity condition 

required by the univariate GARCH model: that the sum of ARCH and GARCH terms has to 

be less than one (Pang et al., 2002). The BEKK (1,1, K) model is defined as: 

kijt
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where 0C  , kA and kB are NN   matrices of parameters, but 0C  is upper triangular. One can 

also write 0'

00 CC . Positivity of tH is guaranteed if  00 H . Here, there are 11 

parameters, against 78 in the VECH model (Bauwens, 2005). This model allows for dynamic 

dependence between the volatility series (Tsay, 2005). 

The Diagonal BEKK Model 

Take kA  and kB  as diagonal matrices. For this case, the BEKK model is a restricted version of 

the VECH model with diagonal matrices (Bauwens, 2005; Franke et al., 2005). The scalar 

BEKK model,  ,UaA kk   UbB kk  , where a and b scalars and U is a matrix of ones 

(Bauwens, 2005). However, if the covariance exhibits a different degree of persistence than the 

volatilities, it is clear that either the volatility or the covariance process is miss-specified (Baur, 

2004). The BEKK (1,1,1) model can be written as a VEC model (subject to restrictions) using 

formula (24) 
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BBAA jttitt   '' 1

' 
           (24) 

The diagonal BEKK model is given by the following equations                     
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The BEKK model also has its diagonal form by assuming kja
, kjb

matrices are diagonal. It is a 

restricted version of the DVEC model. The most restricted version of the diagonal BEKK 

model is the scalar BEKK one with A = aI and B = bI where a and b are scalars.  

Estimation of a BEKK model still bears large computations due to several matrix 

transpositions. The number of parameters of the complete BEKK model is 

2/)1()( 2  NNKNqp . Even in the diagonal one, the number of parameters soon reduces 

to 2/)1()(  NNNKqp , but it is still large. The BEKK form is not linear in parameters, 

which makes the convergence of the model difficult. However, the strong point lies in that the 

model structure automatically guarantees the positive definiteness of tH . Under the overall 

consideration, it is typically assumed that 1 kqp   in the BEKK form’s application. This 

model exhibits essentially the same problems as the Full BEKK model; there is no parameter 

in any equation that exclusively governs a particular covariance equation. Hence, it is not clear 

whether the parameters for 12a   are just the result of the parameter estimates for 11a   and 22a , 

or if the covariance equation alters the parameter estimates of the variance equations. In 

addition, the model is not very flexible and can therefore be  
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Hence, the BEKK model is weakly stationary if the eigenvalues of )()( BBAA   are 

smaller than one in modulus, and then 
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  1'' )()()( 2


 BBAAIVEC

N        (29) 

Multivariate GARCH Model Estimation  

Suppose the vector stochastic process  ty   (for Tt ,...1 ) has a conditional mean, conditional 

variance matrix, and conditional distribution )(),( 00  tt 
 and ),/( 10 tt Iyp 

 respectively. 

Here, 00 (  )0 is the dimensional parameter vector, and 0  is the vector that contains the 

parameters of the distribution of the innovations tZ . Importantly, to justify the choice of the 

estimation procedure, we assume that the model to be estimated encompasses the true 

formulations of )( 0t and )( 0tH (Bauwens et al., 2006). The procedure used most often in 

estimating 0  involves the maximization of a likelihood function constructed under the 

assumption of an dii .. . distribution for the standardized innovations th  . The likelihood 

function for the dii .. . case can then be viewed as a quasi-likelihood function (Bauwens et al., 

2006). Consequently, one has to make an additional assumption on the innovation process by 

choosing a density function, denoted ));(( tzg , where η is a vector of nuisance parameters. 

Thus, the problem to solve is to maximize the sample log-likelihood function ),( TL for the 

L observations, with respect to the vector of parameters ),(    

where 

                      





T

t

tT IyfL
1

11 ),/(log)( 
,       (30) 

with  

                 
),\)((),/( 2/12/1

11  ttttt ygIyf  

      (31) 

and the dependence with respect to   occurs through t  and t . The term 
2/1t  is the 

Jacobian that arises in the transformation from the innovations to the observables. Note that as 

long as (.)g belongs to the class of elliptical distributions, it is a function of tt zz '

, the maximum 

likelihood estimator is independent of the decomposition choice for 
2/1t . This is because  

                            )()( 1''

ttttttt yyzz   

       (32)                          

The most commonly employed distribution in the literature is the multivariate normal, uniquely 

determined by its first two moments (so that ςθ = η since is empty). In this case, the sample 

log-likelihood, defined up to a constant, is 

                  
)()(

2

1
log

2

1
)( 1

1

'

1

ttt

T

t

ttt

T

t

T yyL   




    (33) 
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Under the assumption of conditional normality, the parameters of the multivariate GARCH 

models of any of the above specifications can be estimated by maximizing the log-likelihood 

function l: 

                          
tt

T

t

t

NT
 1

1

'log
2

1
2log

2
)( 



 
    (34) 

where   denotes all the unknown parameters to be estimated, N  is the number of assets (the 

number of series in the system) and ttt uyT  is the number of observations, and all other 

notation is as above. The maximum-likelihood estimate for   is asymptotically normal. This 

makes the traditional procedures for statistical inference applicable (Brooks, 2002). 

Maximizing the log-likelihood function requires nonlinear maximization methods because it 

involves only first-order derivatives. The algorithm introduced by Berndt (1974) is easily 

implemented and particularly useful for the estimation of multivariate GARCH processes. 

It is well-known that the normality of the innovations is rejected in most applications dealing 

with high-frequency data. In particular, the kurtosis of most financial asset returns is larger 

than three which means that they have too many extreme values to be normally distributed. 

Moreover, their unconditional distribution has often fatter tails than what is implied by a 

conditional normal distribution: the increase of the kurtosis coefficient brought by the 

dynamics of the conditional variance is not usually sufficient to match adequately the 

unconditional kurtosis of the data (Bauwens et al., 2006). 

If the conditional distribution of et is not normal, then maximizing equation (34) is interpreted 

as quasi maximum-likelihood )(QML  (Hafner, 2006). The )(QML - estimator is consistent 

under the main assumption that the considered multivariate process is strictly stationary and 

ergodic (Cízek et al., 2005). This quasi-maximum likelihood )(QML  estimator is suitable for 

models which specify conditional covariances and variances because it correctly specifies the 

conditional mean and the conditional variance (Bauwens, Laurent, 2002). Estimation of 

multivariate GARCH models is troublesome, because the number of parameters may be large 

even for a moderate vector dimension N . Suppose there is enough data available for 

estimation, the likelihood might still be relatively “flat” as a function of many parameters. 

Thus, it might be hard for optimization routines to find the global maximum. Therefore, 

constraints on the parameter space are in many cases indispensable (Deistler, 2006). 

3.8 Model Evaluation 

The effectiveness of the multivariate volatility model is evaluated through statistical measures, 

including: 

i. Model Fit: The goodness-of-fit is assessed using information criteria such as the Akaike 

Information Criterion (AIC) and Bayesian Information Criterion (BIC), aiming to strike 

a balance between model complexity and explanatory power. 

ii. Forecasting Accuracy: The model's ability to accurately forecast volatility is evaluated 

through out-of-sample forecasting exercises. Mean Squared Error (MSE) and Root Mean 

Squared Error (RMSE) are employed to assess the accuracy of volatility forecasts. 
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RESULTS AND DISCUSSION 

Data Description 

The dataset used in this study comprises daily stock prices for companies involved in the 

extraction and processing of Gold, Tin, and Zinc within the Nigerian solid minerals sector. The 

data spans over six decades, from 1960 to 2024, capturing various economic regimes, 

geopolitical events, and technological advancements. Stock prices were sourced from the 

Central Bank of Nigeria Statistical Bulletin and authenticated by National Bureau of Statistics, 

to ensure the accuracy and consistency of the data. 

 Descriptive Statistics 

Table 1 provides descriptive statistics of the study stocks. The descriptive statistics for the stock 

return prices of Gold, Tin, and Zinc from January 1960 to May 2024 provide key insights into 

the behavior of these commodities in the Nigerian market. Gold has the highest average 

monthly return, indicating a stronger long-term performance compared to Tin and Zinc. 

However, Gold's returns are also characterized by significant positive skewness and high 

kurtosis, suggesting that while the returns tend to be positive, they also experience extreme 

fluctuations more frequently than a normal distribution would predict. Tin and Zinc show 

different return dynamics. Tin has a slightly lower average return and exhibits negative 

skewness, meaning that extreme negative returns are more common. Zinc, with the lowest 

average return, shows the highest volatility, as indicated by its standard deviation, and a 

distribution that is nearly symmetrical but still prone to extreme returns, as suggested by its 

leptokurtic nature. All three commodities demonstrate non-normal distribution patterns, as 

confirmed by the significant Jarque-Bera test results, which reject the hypothesis of normality. 

This suggests that models capturing volatility in these commodities need to account for the 

observed heavy tails and skewness in their return distributions. Zinc's particularly high 

volatility highlights the need for careful risk management when dealing with this commodity 

in the Nigerian market. 

Table 1: Descriptive Statistics for Stock Prices of Gold, Tin, and Zinc 

Statistic RGOLD RTIN RZINC 

 Mean 0.005440 0.003519 0.003146 

 Median 0.000000 0.001867 0.001606 

 Maximum 0.394699 0.182757 0.334505 

 Minimum -0.183862 -0.251711 -0.287297 

 Std. Dev. 0.043697 0.053552 0.061338 

 Skewness 1.288918 -0.468583 -0.144474 

 Kurtosis 13.30868 6.252485 6.049859 

 Jarque-Bera 3632.068 368.5316 301.8883 

 Probability 0.000000 0.000000 0.000000 

 Sum 4.199619 2.716317 2.428897 

 Sum Sq. Dev. 1.472162 2.211126 2.900730 

 Observations 772 772 772 

 

 



African Journal of Mathematics and Statistics Studies    

ISSN: 2689-5323    

Volume 8, Issue 2, 2025 (pp. 97-128) 

114  Article DOI: 10.52589/AJMSS-Y9OHHTF3 

   DOI URL: https://doi.org/10.52589/AJMSS-Y9OHHTF3 

www.abjournals.org 

Time Series Analysis 

Time series analysis is crucial for understanding the historical behavior and patterns of stock 

prices. Figures 1 present time series plots for Gold, Tin, and Zinc, respectively, illustrating the 

trends, fluctuations, and potential structural breaks. The time series plots facilitate the visual 

inspection of trends, seasonality, and volatility patterns, laying the groundwork for the 

subsequent multivariate volatility modeling. Figure 2 shows the time plot of stock returns over 

the study periods. All the stocks experienced volatility clustering, taking positive and negative 

values with different magnitude. These movements in returns throughout the study are an 

indication of volatility in the stock market. but, merely looking at the trends, a strong 

conclusion may not be drawn until a full statistical analysis is done 

 

Figures 1: Time Series Plots for Gold, Tin, and Zinc 
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Figure 2: Time-Plots for Stock Returns 

Test for Stationarity  

Table 2 presents the results of the Augmented Dickey-Fuller (ADF) test statistic for Gold, Tin 

and Zinc stock prices respectively. There is evidence against the presence of a unit root at level 

for all the study stock. The results suggest that stock prices may require further investigation 

or transformation to achieve stationarity. Table 3 displays the results of the Augmented Dickey-

Fuller (ADF) test statistic for the first differences of Gold, Tin and Zinc stock prices 

respectively. The extremely negative ADF test statistics along with low p-values and the 

rejection of the null hypothesis at different significance levels indicate that the first differences 

of all study socks prices are stationary. 

Table 2: Augmented Dickey-Fuller Test Statistic at Level 

  Gold Stock Price Tin Stock Price Zinc Stock Price 

  t-Statistic t-Statistic  

Augmented Dickey-Fuller test statistic  1.894060 -1.857091 -1.928758 

Test critical values: 1% level -3.438616 -3.438616 -3.438605 

 5% level -2.865078 -2.865078 -2.865073 

 10% level -2.568709 -2.568709 -2.568707 

 Prob.*   0.9998 0.3528  0.3191 
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Table 3: Augmented Dickey-Fuller Test Statistic at First Difference 

  Gold Stock Price Tin Stock Price Zinc Stock Price 

  t-Statistic t-Statistic  

Augmented Dickey-Fuller test statistic -18.95926 -13.51625 -21.75348 

Test critical values: 1% level -3.438616 -3.438616 -3.438605 

 5% level -2.865078 -2.865078 -2.865073 

 10% level -2.568709 -2.568709 -2.568707 

 Prob.*  0.0000 0.0000  0.0000 

 

ARCH Effect Test  

The test statistics for all stock returns are extremely significant, according to Table 4. We agree 

that there is the presence of the ARCH effect in the residuals of the time series since p-values 

< 0.05 allow us to reject the null hypothesis of "no arch effect" at the 5% level. As a result, we 

can now proceed with the estimate of the GARCH family Model. 

Table 4: Heteroskedasticity Test: ARCH 

Gold 

F-statistic 54155.85     Prob. F(1,770) 0.0000 

Obs*R-squared 761.1774     Prob. Chi-Square(1) 0.0000 

Tin 

F-statistic 11913.41     Prob. F(1,770) 0.0000 

Obs*R-squared 725.1325     Prob. Chi-Square(1) 0.0000 

Zinc 

F-statistic 7692.096     Prob. F(1,770) 0.0000 

Obs*R-squared 701.7526     Prob. Chi-Square(1) 0.0000 

 

Multivariate Volatility Modeling 

Building on the univariate analysis, a multivariate volatility model was developed to capture 

the interdependencies and spillover effects among the stock prices of Gold, Tin, and Zinc. The 

proposed model considered joint volatility dynamics and potential cross-market linkages. 

Table 5 presents the estimation results for a VECH (Vectorized Heteroscedasticity) model 

applied to the stock returns. The estimation results from the Diagonal VECH model for the 

stock returns of Gold, Tin, and Zinc reveal significant volatility dynamics in the Nigerian solid 

minerals market. The coefficients related to the mean equations indicate that each commodity's 

returns exhibit autocorrelation, with Gold (M(1,1) = 1.17E-06, p = 0.0000) and Zinc (M(3,3) 

= 0.000116, p = 0.0001) showing significant effects. Some interaction effects are also observed, 

particularly between Gold and Tin (M(1,2) = 1.62E-12, p = 0.0000), but other cross-commodity 

interactions, such as between Tin and Zinc (M(2,3) = -4.54E-13, p = 0.9325), are not 

significant, indicating that not all linkages between these commodities are equally influential. 

The ARCH coefficients demonstrate that past shocks (squared returns) significantly impact 

current volatility across all three commodities. For instance, the ARCH coefficient for Gold 

(A1(1,1) = 0.226015, p = 0.0000) indicates that past shocks have a strong effect on its volatility. 

Similarly, Tin (A1(2,2) = 0.150000, p = 0.0000) and Zinc (A1(3,3) = 0.181447, p = 0.0000) 
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also exhibit significant responses to past shocks. The cross-commodity effects are noteworthy, 

with coefficients like A1(1,2) = 0.184126 (p = 0.0000) indicating that shocks in Tin can 

influence the volatility of Gold, underscoring the interconnectedness of these markets. The 

GARCH coefficients show that volatility is highly persistent in each commodity, with values 

such as B1(1,1) = 0.755472 (p = 0.0000) for Gold and B1(3,3) = 0.802817 (p = 0.0000) for 

Zinc, indicating that once volatility is elevated, it tends to remain high for some time. This 

persistence is especially pronounced in Zinc, suggesting that its market is particularly prone to 

sustained periods of high volatility. Overall, the model captures the complex nature of volatility 

in these markets, driven by both individual commodity factors and cross-commodity 

interactions, which are crucial for risk management and forecasting. 

Table 5: Estimation of Diagonal VECH Model for Stock Returns 

 Coefficient Std. Error z-Statistic Prob. 

M(1,1) 1.17E-06 2.00E-07 5.857865 0.0000 

M(1,2) 1.62E-12 3.61E-13 4.495900 0.0000 

M(1,3) 1.09E-06 1.15E-06 0.948305 0.3430 

M(2,2) 4.51E-17 4.78E-18 9.420104 0.0000 

M(2,3) -4.54E-13 5.36E-12 -0.084729 0.9325 

M(3,3) 0.000116 2.97E-05 3.905439 0.0001 

A1(1,1) 0.226015 0.025506 8.861235 0.0000 

A1(1,2) 0.184126 0.019925 9.240933 0.0000 

A1(1,3) 0.202508 0.019115 10.59425 0.0000 

A1(2,2) 0.150000 0.024595 6.098865 0.0000 

A1(2,3) 0.164976 0.018067 9.131523 0.0000 

A1(3,3) 0.181447 0.021796 8.324796 0.0000 

B1(1,1) 0.755472 0.019682 38.38325 0.0000 

B1(1,2) 0.673263 0.026887 25.04071 0.0000 

B1(1,3) 0.778785 0.014608 53.31352 0.0000 

B1(2,2) 0.600000 0.043836 13.68736 0.0000 

B1(2,3) 0.694039 0.027401 25.32904 0.0000 

B1(3,3) 0.802817 0.018927 42.41599 0.0000 
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Figure 3: VECH Residual Plots of the Gold, Tin and Zinc Stock Returns respectively.  
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Figure 4: VECH Conditional Variance Plots.  
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Figure 5: VECH Plot of Residual Correlogram 

Table 6 BEKK Model for Stock Returns 

Models Coefficient Std. Error z-Statistic Prob. 

M(1,1) 1.17E-06 2.00E-07 5.857865 0.0000 

M(1,2) 1.62E-12 3.61E-13 4.495900 0.0000 

M(1,3) 1.09E-06 1.15E-06 0.948305 0.3430 

M(2,2) 4.51E-17 4.78E-18 9.420104 0.0000 

M(2,3) -4.54E-13 5.36E-12 -0.084729 0.9325 

M(3,3) 0.000116 2.97E-05 3.905439 0.0001 

A1(1,1) 0.475410 0.026825 17.72247 0.0000 

A1(2,2) 0.387298 0.031752 12.19773 0.0000 

A1(3,3) 0.425965 0.025584 16.64959 0.0000 

B1(1,1) 0.869179 0.011322 76.76651 0.0000 

B1(2,2) 0.774597 0.028296 27.37473 0.0000 

B1(3,3) 0.896000 0.010562 84.83197 0.0000 

 

Table 6 shows the estimation results for a BEKK (Baba, Engle, Kraft, and Kroner) model 

applied to the stock returns. he BEKK model results reveal significant interactions and 

volatility dynamics among the stock returns of Gold, Tin, and Zinc. The mean equation 

coefficients indicate that the conditional mean of Gold is significantly influenced by its own 

past values (M(1,1) = 1.17E-06, p = 0.0000) and by the returns of Tin (M(1,2) = 1.62E-12, p = 

0.0000). However, Zinc does not significantly affect Gold’s returns (M(1,3) = 1.09E-06, p = 

0.3430). Tin’s returns also exhibit strong autocorrelation (M(2,2) = 4.51E-17, p = 0.0000), 

while the influence of Zinc on Tin is not significant (M(2,3) = -4.54E-13, p = 0.9325). Zinc's 

own returns show significant autocorrelation as well (M(3,3) = 0.000116, p = 0.0001). The 

ARCH coefficients show that past shocks have a substantial impact on the current volatility of 

all three commodities. Gold has a highly significant response to past shocks (A1(1,1) = 

0.475410, p = 0.0000), followed by Zinc (A1(3,3) = 0.425965, p = 0.0000), and Tin (A1(2,2) 
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= 0.387298, p = 0.0000). This indicates that unexpected price movements in these commodities 

strongly influence their future volatility, with Gold and Zinc being particularly sensitive to past 

shocks. The GARCH coefficients highlight the persistence of volatility across the three 

commodities, with Zinc showing the highest persistence (B1(3,3) = 0.896000, p = 0.0000), 

followed by Gold (B1(1,1) = 0.869179, p = 0.0000), and then Tin (B1(2,2) = 0.774597, p = 

0.0000). This suggests that periods of high volatility in these commodities are likely to be 

prolonged, especially in Zinc, indicating the need for careful monitoring and risk management 

in these markets. 
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Figure 6: BEKK Residual Plots of the Gold, Tin and Zinc Stock Returns respectively.  
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Figure 7: BEKK Conditional Variance Plots.  
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Figure 8: BEKK Plot of Residual Correlogram 
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Diagnostic Check  

The diagnostic check tests as shown in Table 7 suggest that there is no significant ARCH effect 

in the residuals of the models for Gold, Tin, and Zinc stock returns. This means that the 

volatility clustering or conditional heteroskedasticity patterns are not prominent in the 

residuals, and the models adequately capture the variance dynamics. Investors and analysts can 

be more confident in the reliability of the models for predicting these stock returns, at least in 

terms of capturing ARCH effects. The multivariate modeling results offer insights into the 

cross-market interactions and simultaneous volatility dynamics among the selected solid 

minerals.  

Table 7: Diagnostic Check Tests for the presence of ARCH effect in the residuals of the 

models. 

Gold Stock Returns 

F-statistic 0.050448     Prob. F(1,770) 0.8223 

Obs*R-squared 0.050579     Prob. Chi-Square(1) 0.8221 

Tin Stock Return 

F-statistic 0.177141     Prob. F(1,749) 0.6740 

Obs*R-squared 0.177572     Prob. Chi-Square(1) 0.6735 

Zinc Stock Return 

F-statistic 0.044670     Prob. F(1,770) 0.8327 

Obs*R-squared 0.044786     Prob. Chi-Square(1) 0.8324 

Source: Eviews 12 Output  

 Forecasting 

The forecast evaluations indicate that the predictions for Gold and Tin are highly accurate, with 

very low error metrics and Theil coefficients close to zero, reflecting minimal deviations from 

the actual returns. However, the forecast for Zinc shows considerable errors, with high RMSE, 

MAE, and an especially high MAPE, indicating significant inaccuracies in predicting Zinc's 

returns. 

Table 8: Forecast Evaluation  

Forecast RMSE MAE MAPE Theil 

RGOLD  0.009405  0.006800  0.000541 3.74E-06 

RTIN  0.006376  0.004654  0.003710  2.54E-05 

RZINC  0.061299  0.044363  110.8937  0.000050 
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Figure 9(a, b and c): Forecast plot for gold, Tin and Zinc respectively 
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DISCUSSION OF FINDINGS 

The findings presented in the analysis offer valuable insights into the behavior of stock returns 

for Gold, Tin, and Zinc. The descriptive statistics in Table 1 reveal significant implications 

regarding the historical performance of these stocks. Despite variations in their average returns, 

the positive mean returns across all three stocks suggest that investors generally experienced 

positive returns over the study period. However, the notable negative skewness and high 

kurtosis values indicate that the return distributions for all three stocks are asymmetric and 

possess heavier tails than a normal distribution. This implies that extreme returns, both positive 

and negative, are more likely than what would be expected under a normal distribution. 

Visualizing the time plots of stock returns in Figure 2 further reinforces these observations, 

demonstrating volatility clustering across all three stocks. The fluctuations in returns 

throughout the study period suggest a dynamic stock market environment characterized by 

periods of both positive and negative volatility. However, a thorough statistical analysis draws 

definitive conclusions from these trends. 

The application of the VECH model reveals intricate dynamics within the stock returns. The 

M Matrix Coefficients indicate that while lagged squared returns may not significantly impact 

current volatility for certain variables, they exhibit significance for others. Specifically, 

positive coefficients suggest volatility clustering, indicating that periods of high volatility tend 

to persist. This finding is consistent with the result from Ajayi et al. (2019) and Mohammed et 

al. (2022). The presence of significant ARCH and GARCH coefficients underscores the non-

random patterns in stock returns volatility and the persistence of volatility shocks over time, 

respectively. Similarly, the BEKK model reaffirms these observations, providing further 

evidence of volatility clustering, ARCH effects, and persistence in volatility shocks in stock 

returns. The diagnostic check tests in Table 6 offer additional validation, indicating that there 

is no significant ARCH effect in the residuals of the models for Gold, Tin, and Zinc stock 

returns. This result is corroborated with the findings from Yahaya et al. (2022). This suggests 

that the models adequately capture the variance dynamics, enhancing confidence in their 

reliability for predicting stock returns. Overall, the multivariate modeling results offer 

comprehensive insights into the cross-market interactions and simultaneous volatility 

dynamics among the selected solid minerals. These findings are invaluable for investors and 

analysts, empowering them to better understand and manage the associated risks in stock price 

movements. Armed with this knowledge, traders can refine their risk management strategies, 

while investors can make more informed portfolio allocation decisions. 

 

CONCLUSION 

The comprehensive analysis of stock returns for gold, tin, and zinc stocks has provided valuable 

insights into their historical behavior and volatility dynamics. The findings reveal that, on 

average, investors experienced positive returns, but the presence of significant negative 

skewness and high kurtosis values suggests a non-symmetric distribution with heavier tails 

than a normal distribution. This implies a higher likelihood of extreme returns, both positive 

and negative. The application of advanced statistical models, including the VECH and BEKK 

models, has uncovered intricate patterns within the volatility dynamics of these stocks. 

Volatility clustering, ARCH effects, and the persistence of volatility shocks over time have 

been identified, emphasizing the non-random nature of stock returns volatility. 
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Investors and analysts can leverage these insights to enhance their risk management strategies 

and portfolio allocation decisions. By acknowledging the presence of volatility clustering and 

non-random patterns, market participants can make more informed choices in mitigating risks 

and optimizing their investment portfolios. The diagnostic check tests further validate the 

reliability of the models in capturing variance dynamics, providing a level of confidence in 

their predictive capabilities. The absence of significant ARCH effects in the residuals 

underscores the adequacy of the models in capturing the complexity of stock returns, boosting 

their reliability for future predictions. This analysis would contribute valuable knowledge for 

market participants, enabling them to navigate the dynamic landscape of stock market 

volatility. As the financial landscape continues to evolve, these insights will be crucial for 

investors and analysts in making sound decisions, managing risks effectively, and achieving 

their financial objectives. 

Based on the findings of the analysis, it is recommended that investors and analysts carefully 

consider the implications of volatility clustering, ARCH effects, and persistence in volatility 

shocks when making investment decisions in the stock market, particularly regarding gold, tin, 

and zinc stocks. 

i. Investors should develop robust risk management strategies that account for the non-

random patterns observed in stock returns volatility. This may include diversification 

across asset classes, hedging strategies, and setting appropriate stop-loss levels to 

mitigate potential losses during periods of heightened volatility. 

ii. Consideration should be given to incorporating the insights gained from the analysis into 

portfolio allocation decisions. Investors may opt to allocate their portfolios based on the 

observed volatility dynamics, ensuring a balanced exposure to assets that exhibit varying 

degrees of volatility clustering and persistence in volatility shocks. 

iii. Given the dynamic nature of the stock market, it is imperative for investors to 

continuously monitor the volatility dynamics of their portfolios and adjust their strategies 

accordingly. Regular review of the models and diagnostic tests can help identify changes 

in volatility patterns and guide timely portfolio adjustments. 

iv. For individuals less experienced in financial markets or those managing larger portfolios, 

seeking professional advice from financial advisors or portfolio managers with expertise 

in risk management and investment strategies may be beneficial. These professionals can 

provide personalized recommendations tailored to individual investment objectives and 

risk tolerances. 
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