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ABSTRACT: The characterisation of the space of Fréchet   

generalised functions was established with respect to the weak-⋆ 

topology, which confirms the completeness of the space, 𝐺𝑋, 

through the space of test functions , 𝐷(𝑋). The isomorphism 

bridges the gap between the Fréchet space of test functions and 

the space of generalised functions. 
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INTRODUCTION   

Fréchet spaces originated from Maurice Fréchet’s 1906 thesis, where they represented a 

significant generalisation of Banach spaces, allowing more flexible structures while 

maintaining completeness properties. These spaces are defined using a countable family of 

seminorms, making them especially useful in studying function spaces where a single norm 

might be too restrictive. The development of Fréchet spaces has been crucial in expanding 

functional analysis, providing mathematicians with tools to handle infinite-dimensional spaces 

that naturally appear in mathematics and physics. Meanwhile, the theory of generalised 

functions was developed in the mid-twentieth century through the work of Laurent Schwartz 

and Paul Dirac, marking a profound extension of the classical concept of functions. The need 

for generalised functions stemmed from limitations in classical analysis, particularly in 

representing physical phenomena such as point charges, point masses, or instantaneous 

impulses. The Dirac delta "function" is the most famous example. Although not a function in 

the traditional sense, it acts as an object that is zero everywhere except at a single point, where 

it is "infinitely large" in a way that its integral equals one.   

Mathematically, generalised functions are defined not by their pointwise values but by their 

action on test functions through integration. This approach allows a rigorous treatment of 

operations like differentiation on objects that may not be differentiable, or even continuous, in 

the classical sense. For instance, the derivative of the Heaviside step function can be properly 

defined as the Dirac delta distribution. The theory of generalised functions provides a 

framework for solving differential equations in a broader setting, accommodating solutions that 

would not exist classically, while offering more powerful analytical tools and more accurate 

modelling of physical phenomena.   

In other words, the theories of generalised functions and Fréchet spaces are integral to modern 

functional analysis. Generalised functions extend classical function theory to handle objects 

like the Dirac delta, while Fréchet spaces provide a natural setting for these generalised 

functions. Specifically, the space of generalised functions can be understood as the dual space 

of smooth functions with compact support, a framework that aligns naturally with the topology 

of Fréchet spaces.   

Many researchers have contributed significantly to the study of Fréchet spaces and generalised 

functions in recent decades. Among them is Dobson (2011) who investigates Fréchet geometry, 

extending earlier results on the structure of second tangent bundles to infinite-dimensional 

Banach and Fréchet manifolds. His work led to further insights into differential equations in 

Fréchet structures, along with results on the hypercyclicity of operators on Fréchet spaces.  

Ivanov et al. (2018) proves a surjectivity result in Nash-Moser-type Fréchet spaces, using 

uniform estimates over all seminorms. Their method applies to continuous and strong Gâteaux 

differentiable functions and extends to a multi-valued setting. Their key innovation was 

geometrising tameness estimates, reducing the problem to Banach space subproblems solvable 

via an abstract iteration scheme.   

Furthermore, Curiel (2015) emphasises the importance of completeness and translation 

invariance in Fréchet metrics, which ensure compatibility between topological structure and 

vector space operations. Zaal (2015) notes that boundedness in Fréchet spaces differs from the 

usual metric sense. Instead, it defines via absorption by neighbourhoods: a subset (W) is 
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bounded if, for every open neighbourhood (U) of 0, there exists (t > 0) such that W ⊂ tU. 

Allahyari et al. (2020) introduces a new contraction concept and extends the Tychonoff fixed-

point theorem, applying it to infinite systems of integral equations using measures of 

noncompactness in Fréchet spaces.   

Lupini (2022) on the one hand develops a theory of canonical approximations for Polishable 

subgroups of Polish groups, classifying their Borel complexity. His work also characterises the 

ranges of continuous linear maps between separable Fréchet and Banach spaces. Freyn (2013) 

on the other hand extends a result of Mashreghi and Ransford, proving that every separable 

infinite-dimensional Fréchet space with a continuous norm is isomorphic to a subspace of 

holomorphic functions on the unit disc or complex plane. This leads to examples of nuclear 

Fréchet spaces of holomorphic functions without the bounded approximation property. Shaviv 

(2018) defines Schwartz functions, tempered functions, and tempered distributions on 

manifolds definable in polynomially bounded o-minimal structures, showing that classical 

properties from the Nash category hold in this generalised setting, while Giordano et al. (2022) 

proves Picard-Lindelöf convergence for smooth normal Cauchy problems in PDEs under a 

Weissinger-like condition, encompassing non-analytic cases. They also derived an inverse 

function theorem for graded Fréchet spaces.   

Giordano et al. (2014) introduces functionally compact sets in Colombeau’s generalised 

functions, constructing test function spaces analogous to distribution theory and studying their 

topological properties. Khan and Lamb (2013) develop a summability theory for orthonormal 

sets in multi-normed spaces, applying it to test generalised function spaces, including almost-

periodic generalised functions with uncountable exponential bases.   

Fréchet spaces of generalised functions find natural applications in differential geometry and 

analysis in the work of Jiang et al. (2012)  as they study differential operators on manifolds, 

showing that the space (DO(𝑀)𝑘)  (operators of order (k)) forms a Fréchet space, providing a 

rigorous framework for analysis.  Dave (2009) also introduces a Fréchet structure for analysing 

differential equations in mathematical physics, enabling novel approaches to regularity. For 

instance, the Sobolev regularity of a distribution (u) can be interpreted via tameness of maps 

between the spaces, 𝐶∞(M) and 𝜑−∞(M).  Al-Omari (2019) successively explores local 

regularity properties (e.g., singular support, wavefront sets) using tameness conditions. He also 

extends integral transforms (e.g., Bessel-type integrals) between Fréchet spaces of Boehmians 

(a generalisation of distributions). Sheehy (2019) establishes convolution products and 

fundamental theorems in Boehmian spaces, extending integral transform methods. 

Additionally, he applies Fréchet space concepts to computational geometry, generalising the 

Fréchet distance for comparing complex objects.  

This paper is divided into three parts: Part I – Introduction and Literature Review; Part II – 

Definitions and Propositions; and Part III – Results and Conclusion.   
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Preliminaries 

Definition (Fréchet Space) 

A  Fréchet space, X, is a topological vector space that satisfies two key conditions: 

1. Metrisability: There exists a metric 𝑑 on the space X such that X is homeomorphic to a 

metric space. This means the space can be described with a distance function. 

2. Complete: The space is complete with respect to the topology induced by the metric. In 

other words, every Cauchy sequence in the space converges to an element in the space. 

In other words, a Fréchet space can be characterised as a locally convex space whose topology 

is generated by a countable family of seminorms or a locally convex space that is complete 

with respect to a translation-invariant metric. (See Allahyari et al., 2020; Lupini, 2022; Curiel, 

2015.) 

The Space of Generalised Functions  

Generalised functions are defined through a dual-space approach, requiring first the 

establishment of appropriate spaces of well-behaved "test functions."  Two fundamental test 

function spaces are commonly used: (i) the space D of infinitely differentiable functions with 

compact support, and (ii) the space S (sometimes denoted T) of rapidly decreasing smooth 

functions, also known as the Schwartz space. 

We will take the definition of the test functions. 

Definition (Test Functions) 

A test function is a smooth function with compact support (functions that are infinitely 

differentiable, that are non-zero within a bounded interval). These functions are the elements 

of the space  which are called "sufficiently good" functions on which the generalised 

functions act. In the same vein, for the function ϕ : Rn → R , is expressed as 

                 𝜙(𝑡) = {𝑒𝑥𝑝
1

𝑡  𝑖𝑓 𝑡 < 0;  0 𝑖𝑓 𝑡 ≥ 0                                                              (2.1) 

 is a member of C∞(R), where ϕ(t) = ϕ0(||t||
2 − 1), and  ,  and  the support of ϕ is the 

closed unit ball {x ∈ R : |x| ≤ 1}. (See Georgiev, 2015.) 

Definition  (Generalised Functions) 

Let X ⊂ Rn be an open set. Then, the generalised functions are continuous linear functionals, 

D′(X), over a space of infinitely differentiable functions D(X) such that all continuous functions 

have derivatives which are themselves generalised functions. (See Al-Gwaiz, 1992.) 

Many classical spaces of test functions, such as     (smooth functions with compact 

support), can be viewed as Fréchet spaces. These spaces have the topology of smooth 

convergence, making them ideal spaces to test the  generalised functions. 
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Specifically, the topology of this space     can be defined by a family of seminorms that 

measure the size of a function and its derivatives up to a certain order,  thus forming a Fréchet 

space.  Generalised  functions  act as continuous linear functionals on such spaces.  

Throughout this work, the space of generalised functions will be denoted by  𝐺𝑋. 

Since Fréchet spaces are complete with respect to a topology defined by seminorms, they allow 

for smooth functions and their derivatives to converge in a manner that is consistent with the 

behaviour of generalised functions. The Fréchet topology enables the space of smooth 

functions to be refined enough to handle generalised functions like the test and Delta functions.  

This implies that the generalised functions can enjoy the properties of the Fréchet spaces – 

bornology and barallel.   

Proposition:  GX  is a bornological space.  (See Nwachukwu et al., 2025.) 

Nwachukwu et al. remarked that GX, being a bornological space, allows the flow of an 

inductive limit topology. Also, it is a Fréchet space, though not metrisable but can converge in 

a weak*-topology. 

The Space of Generalised Functions, GX , versus  the  Fréchet Space, X 

With the help of convergence of the space test functions, GX   can be seen as a  Fréchet space 

when we equip GX  with a topology that makes it complete, metrisable and locally convex. We 

define a topology on GX using the notion of convergence of test functions. 

A sequence of generalised functions GXn is said to converge to another generalised function 

GX1 if for every test function ϕ ∈ D(X) of smooth functions with compact support, the sequence 

of numbers {GXn(ϕ)} converges to GX1(ϕ) as n tends to infinity.  With this, we define a weak 

⋆ -topology on GX. In this topology, a sequence of generalised functions converges when 

applied to every test functions, ϕ ∈ D(X) and it makes GX  a locally convex topological vector 

space. Consequently, for GX to be a Fréchet space, we show that GX   admits a complete metric 

due to the topology of convergence in the test functions. Sequel to this, we say that GX is a 

sequentially complete metrisable locally convex space. 

Theorem: Let D(X) be a Fréchet space of smooth functions with compact support equipped 

with the topology induced by a countable family of seminorms {PK}. Let GX  be the space of 

generalised functions equipped with weak ⋆- topology. Then, there exists a continuous linear 

map τ : D(X) → GX that preserves convergence such that for any sequence {ϕn} in GX  which 

converges to 0 in D(X), with respect to the seminorms, the corresponding sequence (τ{ϕn}) in 

GX  converges to 0 in  the weak ⋆ -topology. 

Proof: Let 𝜙, 𝜑 ∈ 𝐷(𝑋). Then, we define the linear function 𝜏: 𝐷(𝑋) → 𝐺𝑋 by (𝜙)(𝜑) = 𝜙(𝜑) 

∀𝜙, 𝜑 ∈ 𝐷(𝑋). Next, we show that 𝜏 is well-defined by choosing a function in 𝐷(𝑋) which has 

an equivalent class. By Proposition 2.2.3, we pick two functions 𝜑 and 𝜓 in 𝐷(𝑋) such that 

𝜑 − 𝜓 = 0, which implies (𝜑 − 𝜓)(𝜙) = 0 ∀𝜙 ∈ 𝐷(𝑋). Now, 𝜏(𝜑) and 𝜏(𝜓) are equivalent 

elements in 𝐺𝑋,  for any given generalised functions, 𝑢 ∈ 𝐺𝑋, and by definition of 𝜏, we have 

                                       𝑢(𝜏(𝜑)) = 𝑢(𝜑)                                                                 (3.1) 
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Adding 𝑢(𝜓) to both sides, we have 

                                     𝑢(𝜏(𝜓)) = 𝑢(𝜓)                                                                   (3.2) 

Now, in the sense of generalised functions, 𝜑 − 𝜓 = 0, we have 𝑢(𝜑 − 𝜓) = 0. By linearity 

of 𝑢, we rewrite this as 

                                          𝑢(𝜑) − 𝑢(𝜓) = 0                                                                 (3.3) 

                                      𝑢(𝜑) = 𝑢(𝜓)                                                                       (3.4) 

This shows that (𝜏(𝜑)) = 𝑢(𝜏(𝜓)) ∀𝑢 ∈ 𝐺𝑋. This implies that 𝜏(𝜑) and 𝜏(𝜓) are equivalent 

in 𝐺𝑋. 

Suppose we have two distinct elements 𝜑 and 𝜓 in 𝐷(𝑋) such that 𝜑 ≠ 𝜓, and this implies 

that 𝜏(𝜑) ≠ 𝜏(𝜓). By definition of 𝜏, 

                                   𝜏(𝜑(𝜙)) = 𝜑(𝜙), ∀𝜙 ∈ 𝐷(𝑋)                                              (3.5) 

and 

                          𝜏(𝜓(𝜙)) = 𝜓(𝜙), ∀𝜙 ∈ 𝐷(𝑋).                                                       (3.6) 

Since 𝜑 and 𝜓 are distinct, there exists a test function 𝜙0 ∈ 𝐷(𝑋) such that  𝜑(𝜙0) ≠ 𝜓(𝜙0). 

Therefore, 𝜏(𝜑(𝜙0)) ≠ 𝜏(𝜓(𝜙0)). This implies 𝜏(𝜑) and 𝜏(𝜓) are two distinct elements in 

𝐺𝑋. 

Thus, 𝜏 is injective. 

Next, let 𝑢 ∈ 𝐺𝑋. Then, there exists an element 𝜑 ∈ 𝐷(𝑋) such that 𝜏(𝜑) = 𝑢. Since 𝑢 ∈ 𝐺𝑋, 

for any test function 𝜙 ∈ 𝐷(𝑋), we have 𝑢(𝜙) is a real number. Now, given a function 𝜑 ∈
𝐷(𝑋) such that 𝜏(𝜑) = 𝑢, ⇒ ∀𝜙 ∈ 𝐷(𝑋); 𝜏(𝜑)(𝜙) = 𝜑(𝜙) = 𝑢(𝜙) 

Also, if we consider 𝜙0 ∈ 𝐷(𝑋), 𝜑(𝜙0) = 𝑢(𝜙) ∈ 𝐷(𝑋), since 𝑢(𝜙) is a real number for any 

test function 𝜙. For 𝜑0, we have 

                               𝜏(𝜑0)(𝜙) = 𝜑0(𝜙) = 𝑢(𝜙).                                                     (3.7) 

Thus, we find an element 𝜑0 ∈ 𝐷(𝑋) such that 𝜏(𝜑0) = 𝑢 for any 𝑢 ∈ 𝐺𝑋. Then,  𝜏 is 

surjective. Now, let {𝜑𝑛} ∈ 𝐷(𝑋) be a sequence of test functions on 𝐷(𝑋) that converges to a 

test function 𝜑 ∈ 𝐷(𝑋). That is, for all seminorms 𝑃𝐾 on 𝐷(𝑋), we have 

                                  𝑙𝑖𝑚
𝑛→∞

𝑃𝐾(𝜑𝑛 − 𝜑) = 0                                                               (3.8) 

By Proposition 4.1.1, this implies that the sequence (𝜑𝑛 − 𝜑) converges to 0 in 𝐷(𝑋) with 

respect to the seminorms. Then, {𝜏(𝜑𝑛)} converges to 𝜏(𝜑) in the weak ⋆- topology. For any 

generalised function 𝑢 ∈ 𝐺𝑋, the sequence {𝑢(𝜏(𝜑𝑛))} converges to 𝑢(𝜏(𝜑)). Now, let 𝑢 ∈ 𝐺𝑋 

be arbitrary such that 

                                  𝑙𝑖𝑚
𝑛→∞

𝑢(𝜏(𝜑𝑛)) = 𝑢(𝜏(𝜑)).                                                     (3.9) 
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By the definition of 𝜏, we have 

                                  𝑢(𝜏(𝜑𝑛)) = 𝜏(𝜑𝑛)(𝑢)                                                          (3.10) 

If we consider the sequence (𝜑𝑛 − 𝜑), we have 

                                               𝑙𝑖𝑚
𝑛→∞

(𝜑𝑛 − 𝜑)(𝑢) = 0                                                    (3.11) 

By linearity of 𝜏, we have 

                     𝜏(𝜑𝑛 − 𝜑)(𝑢) = 𝜏(𝜑𝑛)(𝑢) − 𝜏(𝜑)(𝑢)                                                (3.12) 

  ⇒ 

                        𝑙𝑖𝑚
𝑛→∞

[𝜏(𝜑𝑛)(𝑢) − 𝜏(𝜑)(𝑢)] = 0.                                                     (3.13) 

We rearrange this and obtain 

                            𝑙𝑖𝑚
𝑛→∞

𝜏(𝜑𝑛)(𝑢) − 𝑙𝑖𝑚
𝑛→∞

𝜏(𝜑)(𝑢) = 0                                              (3.14) 

 ⇒ 

                            𝑙𝑖𝑚
𝑛→∞

𝜏(𝜑𝑛)(𝑢) = 𝑙𝑖𝑚
𝑛→∞

𝜏(𝜑)(𝑢).                                                  (3.15) 

Thus, {𝜏(𝜑𝑛)} converges to 𝜏(𝜑) in the weak⋆ −𝑡𝑜𝑝𝑜𝑙𝑜𝑔𝑦. 

Therefore, 𝜏 is linear, injective, surjective and preserves convergence. There is a topological 

isomorphism between 𝐷(𝑋) and  𝐺𝑋. 

 

CONCLUSION 

This paper has established that  𝐺𝑋 is the continuous dual of 𝐷(𝑋) endowed with the weak-⋆ 

topology, confirming the completeness of the space of generalised functions, 𝐺𝑋. Furthermore, 

the isomorphism provides a key link between the Fréchet space of test functions and the space 

of generalised functions.  
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