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ABSTRACT: This paper presents a mixture distribution of a new 

modelling tool, which is termed Gumbel-Exponential (GEXP) 

distribution. The distribution allows us to capture some real 

characteristics of data and it is an important tool for 

understanding the phenomenon. The various statistical properties 

of this distribution were fully explored and discussed. These 

include: the mean, variance, moments, mode, reliability function 

and hazard function. The worth of the mixing distribution has been 

demonstrated by applying it to real life data. 

KEYWORDS: Gumbel Distribution; Exponential Distribution; 

Reliability Function; Hazard Function; Maximum Likelihood 

Estimation. 

AMS 2010 Mathematics Subject Classification Objects  

 

GUMBEL-EXPONENTIAL DISTRIBUTION: 

ITS PROPERTIES AND APPLICATION 

Victor Mimoh Mazona¹*, Femi Barnabas Adebola¹, and Vincent Odiaka² 

¹Department of Statistics, Federal University of Technology, Akure, Nigeria. 

²Department of Computer Science, Nottingham Trent University, United Kingdom. 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Cite this article: 

Mazona, V. M., Adebola, F. B., 

Vincent, O. (2025), Gumbel-

Exponential Distribution: Its 

Properties and Application. 

African Journal of 

Mathematics and Statistics 

Studies 8(4), 18-32. DOI: 

10.52589/AJMSS-

RUNRPJAZ 

 

Manuscript History 

Received: 9 Aug 2025 

Accepted: 11 Sep 2025 

Published: 22 Sep 2025 

 

Copyright © 2025 The Author(s). 

This is an Open Access article 

distributed under the terms of 
Creative Commons Attribution-

NonCommercial-NoDerivatives 

4.0 International (CC BY-NC-ND 
4.0), which permits anyone to 

share, use, reproduce and 

redistribute in any medium, 
provided the original author and 

source are credited.  

 

 



African Journal of Mathematics and Statistics Studies   

ISSN: 2689-5323    

Volume 8, Issue 4, 2025 (pp. 18-32) 

19  Article DOI: 10.52589/AJMSS-RUNRPJAZ 

   DOI URL: https://doi.org/10.52589/AJMSS-RUNRPJAZ 

www.abjournals.org 

INTRODUCTION 

Statistical analysis of real life problems has drawn great attention over the years as results 

obtained from these studies have been used efficiently to resolve a wide range of problems and 

enhanced policy formulation. The quality of procedure used in statistical analysis depends on 

the assumed probability model or distribution because this considerable effort has been 

expended in the large development classes of standard probability distribution along with 

relevant statistical methodology. 

The use and application of mixing distributions in research related to reliability, biomedicine, 

ecology and several other areas are of tremendous practical importance in mathematics, 

probability and statistics. These distributions arise naturally as a result of observations 

generated from a stochastic process and recorded with some function.  

The foundational concepts of these distributions have been employed in a wide variety of 

research. The need to enhance greater flexibility of various statistical distributions to many real 

life phenomena has led to the development of several new families of distributions like the 

generalized gamma distribution (Stacy, 1962), generalized normal distribution (Box & Tiao, 

1962) and generalized logistic distribution (Prentice, 1976). Also, Johnson et al. (1995) 

summarized three types of extreme value distributions: Type I, Type II and Type III, with Type 

I also known as the Gumbel distribution, Type II the Frechet distribution and Type III the 

Weibull distribution. Some others include: the Beta-Gumbel (Nadarajah & Kotz, 2004), the 

Exponentiated Gumbel (Nadarajah, 2006), the generalized Gumbel (Cooray, 2010), Weibull-

Pareto Distribution (Alzaatreh et al., 2013; Alzaatreh et al., 2014) and Multivariate Generalized 

Poisson (Famoye, 2015). 

The application of some of these distributions includes the work of Mudholkar et al. (1995) 

which emphasized the usefulness of the Exponentiated Weibull Distribution compared to the 

2-parameter Weibull distribution by studying applications on bus motor failure data. In his 

proposed Exponentiated Gumbel distribution, Nadarajah (2006) illustrated the application of 

the distribution by using Orlando, Florida rainfall data. Ewemoje and Ewemooje (2011) 

showed that Log-Pearson Type III distribution is the most suitable distribution for modeling 

on-site annual maximum flood flow for Ona River under Ogun-Oshun river basin. Ewemooje 

(2014) also modelled road traffic fatalities in Nigeria with Weibull distribution in order to curb 

rising traffic injuries and fatalities. Therefore, we propose mixture distribution of the classical 

Gumbel and Exponential distribution, which is termed Gumbel-Exponential (GEXP) 

distribution, with various reliability properties of this distribution fully explored, as well as a 

comparison of the performance of the proposed distribution with the individual distribution in 

modelling life data. 
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MATERIAL AND METHODS 

The Gumbel Distribution 

A continuous random variable X is said to follow the Gumbel distribution if it has the 

probability density function (PDF) and cumulative distribution function (CDF) respectively. 

                    𝑓(𝑥)

=
1

𝛼
𝑒𝑥𝑝 𝑒𝑥𝑝 

−  (
𝑥 −  𝜀

𝛼
) 𝑒𝑥𝑝 [− 𝑒𝑥𝑝 𝑒𝑥𝑝 − (

𝑥 −  𝜀

𝛼
) ]                                         (1)  

                                   𝐹(𝑥) =                                                         (2)  

−∞ < 𝑥 <  ∞, 𝛼 > 0, −∞ <  𝜀 <  ∞   

where 𝛼 and ε are scale and location parameters respectively (Johnson et al., 1995). 

If we define 𝑍 =  
𝑥− 𝜀

𝛼
 and substitute into (1) and (2), then we would obtain the standard Gumbel 

distribution given by its PDF and CDF respectively by: 

                                              𝑓(𝑥) =  𝑒𝑥𝑝 − 𝑧 𝑒𝑥𝑝[−𝑒𝑥𝑝 − 𝑧]                                                 (3) 

                                                    𝐹(𝑥) =𝑒𝑥𝑝 𝑒𝑥𝑝 [−𝑒𝑥𝑝 − 𝑧]                                                    (4) 

where z is the standard Gumbel random variable. 

Moments of the Gumbel Distribution 

The moment generating function (mgf) of a continuous random variable X is defined by: 

                               𝑀𝑋(𝑡)  =  𝐸[𝑒𝑥𝑝 𝑒𝑥𝑝 𝑡𝑥 ]  = 𝑡𝑥𝑓(𝑥)𝑑𝑥                                        (5)      

−∞ 

for |t| < 1, where 𝑓(𝑥) is the PDF of the given distribution. For the standard Gumbel 

distribution, the mgf is given by: 

                  𝑀𝑍(𝑡)  =  𝐸[𝑒𝑥𝑝 𝑒𝑥𝑝 𝑡𝑥 ]  
= 𝑡𝑧 𝑒𝑥𝑝 𝑒𝑥𝑝 − 𝑧 𝑒𝑥𝑝 𝑒𝑥𝑝 [− 𝑒𝑥𝑝 𝑒𝑥𝑝 − 𝑧 ]  𝑑𝑧                  (6)      

If we let  

𝑦 =𝑒𝑥𝑝 𝑒𝑥𝑝 −  𝑧  ⟹  𝑤ℎ𝑒𝑛 𝑧 =  ∞, 𝑦 =  0, 𝑤ℎ𝑒𝑛 𝑧 =  −∞, 𝑦 =  ∞, 𝑑𝑦 
=  −𝑒𝑥𝑝 − 𝑧𝑑𝑧. 

Thus, 

𝑀𝑍(𝑡) = ∫ 𝑦−𝑡 𝑒𝑥𝑝 𝑒𝑥𝑝 − 𝑦(−𝑑𝑦) 
0

−∞
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=  ∫ (𝑒𝑥𝑝 𝑒𝑥𝑝 −  𝑧 )−𝑡𝑒𝑥𝑝 − 𝑧 𝑒𝑥𝑝[−𝑒𝑥𝑝 − 𝑧]
∞

−∞

𝑑𝑧 

                                                             𝑀𝑍(𝑡) =  𝛤(1 −  𝑡)                                                         (7)    

   

Since any random Gumbel variable X with location and scale parameter ε and 𝛼 respectively 

can be expressed as a linear transformation of a standard Gumbel variable Z, i.e., 

𝑍 =  
𝑥− 𝜀

𝛼
, it implies that 

𝑋 =  𝜀 +  𝛼𝑍, 

Thus, the mgf of the Gumbel random variable X is given by: 

𝑀𝑋(𝑡) =  𝑀𝜀+𝛼𝑍(𝑡)  =  𝐸[𝑒𝑥𝑝 𝑒𝑥𝑝 (𝜀 +  𝛼𝑍)𝑡 ] 

From (7) 𝑀𝛼𝑍(𝑡)  =  𝐸[𝑒𝑥𝑝 𝑒𝑥𝑝 𝛼𝑧𝑡 ]  =  𝛾(1 − 𝛼𝑡). Thus, the mgf of the Gumbel random 

variable X is given by: 

                                                𝑀𝑥(𝑡) =𝑒𝑥𝑝 𝑒𝑥𝑝 𝜀𝑡𝛤(1 −  𝛼𝑡)                                                         (8) 
  

The 𝑟𝑡ℎ moment of the random variable X can be obtained by differentiating 𝑀𝑋(𝑡) r-times 

and evaluating the derivative at t = 0. Taking the logarithm of (8) gives the cumulant generating 

function 𝜙(𝑡) given by: 

𝜙(𝑡)  =  𝑙𝑜𝑔𝑀𝑋(𝑡)  =  𝑙𝑜𝑔(𝑒𝑥𝑝 𝑒𝑥𝑝 𝜀𝑡𝛾(1 −  𝛼𝑡 ) 

𝜙(𝑡)  =  𝜀𝑡 +  𝑙𝑜𝑔𝛾(1 −  𝛼𝑡) 

 

On differentiating 𝜙(𝑡) once and twice and setting t = 0, we obtain the mean and variance 

respectively. 

𝜙′(0)  =  𝜀 −  𝛼𝜓(1)  =  𝜀 +  𝛼𝛾 

It follows that the mean is given by: 

                              𝜇x =  𝜀 + 0.5772𝛼                                                                           (9)   

Hence, the variance is given by: 

                                                           𝜎𝑋
2 =  

𝛼2𝜋2 

6
                                                                       (10)                     
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Method of Moment Estimates of the Gumbel Parameters  

Given the expression for the mean and variance of the random Gumbel variable in (9) and (10), 

it implies that: 

 

                                                      𝜀̂ =  𝑋  −  0.5772𝛼̂                                                             (11)  

                                                             𝛼̂ =  
√6

𝜋
𝑆𝑥                                                                      (12) 

Maximum Likelihood Estimation of the Gumbel Parameters 

The likelihood function of the Gumbel distribution for a random independent 

𝑠𝑎𝑚𝑝𝑙𝑒 𝑥1, 𝑥2, . . . , 𝑥𝑛  of size n is: 

                             𝐿

=  ∏ [
1

𝛼
𝑒𝑥𝑝 𝑒𝑥𝑝 − (

𝑥𝑖 − 𝜀

𝛼

𝑛

𝑖=1

𝑒𝑥𝑝 𝑒𝑥𝑝 [− 𝑒𝑥𝑝 𝑒𝑥𝑝 − (
𝑥𝑖 − 𝜀

𝛼
) ]   ]                       (13) 

  

Taking the natural logarithm of the likelihood function, we obtain the log-likelihood function 

given by: 

𝜀 =  𝛼 [𝐼𝑛(𝑛) − 𝐼𝑛 ∑ 𝑛 𝑒𝑥𝑝 𝑒𝑥𝑝 − (
𝑥𝑖

𝛼
)

𝑖=1

  ] 

𝑋 =  𝛼 +
∑ 𝑥𝑖 𝑒𝑥𝑝 𝑒𝑥𝑝 −

𝑥𝑖

𝛼  𝑛
𝑖=1

∑ 𝑥𝑖 𝑒𝑥𝑝 𝑒𝑥𝑝 −
𝑥𝑖

𝛼
𝑛
𝑖=1  

 

The hazard function of a probability distribution is defined as: 

𝐻(𝑥) =
𝑓(𝑥)

1 − 𝐹(𝑥)
 

For the Gumbel distribution, the hazard function is given by:  

                             𝐻(𝑥)

=  

1
𝛼 𝑒𝑥𝑝 𝑒𝑥𝑝 − (

𝑥 − 𝜀
𝛼 ) 𝑒𝑥𝑝 𝑒𝑥𝑝 [− 𝑒𝑥𝑝 𝑒𝑥𝑝 −  (

𝑥 − 𝜀
𝛼 )  ]  

1 −𝑒𝑥𝑝 𝑒𝑥𝑝 [− 𝑒𝑥𝑝 𝑒𝑥𝑝 − (
𝑥 − 𝜀

𝛼 )  ]  
                         (14) 
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The reliability function of a probability distribution is defined as: 

𝑅(𝑥)  =  1 −  𝐹(𝑥) 

                                   𝑅(𝑥)  

=  1 −𝑒𝑥𝑝 𝑒𝑥𝑝 [− 𝑒𝑥𝑝 𝑒𝑥𝑝 −  (
𝑥 − 𝜀)

𝛼
 )]                                           (15) 

 Exponential Distribution 

A random variable X is said to follow the exponential distribution if it has the probability 

density function (PDF) and cumulative distribution function (CDF) respectively: 

                                            𝑓(𝑥) =
1

𝛽
𝑒𝑥𝑝 𝑒𝑥𝑝 −

𝑥

𝛽
                                                                     (16)  

                                           𝐹(𝑥) = 1 −𝑒𝑥𝑝 𝑒𝑥𝑝 −
𝑥

𝛽
                                                                  (17)  

𝑥 > 0, 𝛽 > 0 

where 𝛽 is a scale parameter (Johnson et al., 1995) 

Moments of the Exponential Distribution 

The mgf of the exponential random variable X is given as: 

 

                  𝑀𝑥(𝑡)  =  𝐸[𝑒𝑥𝑝 𝑒𝑥𝑝 𝑡𝑥 ]  = 𝑡𝑥
1

𝛽
𝑒𝑥𝑝 𝑒𝑥𝑝 −

𝑥

𝛽
 𝑑𝑥                    

                                                    𝑀𝑥(𝑡) =
1

1 − 𝛽𝑡
                                                                   (18) 

 

The cumulant generating function is given by: 

                   𝜙(𝑡) =𝑙𝑜𝑔 𝑙𝑜𝑔 𝑀𝑥(𝑡) =𝑙𝑜𝑔 𝑙𝑜𝑔 (
1

1−𝛽𝑡
) =  −𝑙𝑜𝑔 (1 − 𝛽𝑡)                         (19) 

On differentiating 𝜙(𝑡) once and twice and setting t = 0, we obtain the mean and variance of 

the exponential distribution respectively. In particular, 

𝜙′(𝑡) =  
𝛽

1 − 𝛽𝑡
 

𝜙′′(𝑡) =  𝛽2(1 − 𝛽𝑡)−2 

                                                     𝜇𝑥 =  𝜙′(0) = 𝛽                                                                (20) 

                                                     𝜎𝑥
2 =  𝜙′′(0) =  𝛽2                                                            (21) 
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Method of Moments Estimate of the Exponential Parameter 

We see that the mean of the exponential random variable X is equal to the exponential scale 

parameter 𝛽. Thus, given a sample of observations 𝑥1, 𝑥2, . . . , 𝑥𝑛, the method of moments 

estimate of the exponential scale parameter 𝛽 is given by: 

                                                        𝛽̂ =
1

𝑛
∑ 𝑥𝑖

𝑛

𝑖=1

                                                                      (22) 

Maximum Likelihood Estimation of the Exponential Parameter 

The likelihood function of the exponential distribution for a random independent sample 

𝑥1, 𝑥2, . . . , 𝑥𝑛, of size n is: 

𝐿 =  ∏ [
1

𝛽
𝑒𝑥𝑝 𝑒𝑥𝑝 −

𝑥

𝛽
 ]

𝑛

𝑖=1

 

Taking the natural logarithm of the likelihood function, we obtain the log-likelihood function 

given by: 

𝐿 =  𝐼𝑛 ∏ [
1

𝛽
𝑒𝑥𝑝 𝑒𝑥𝑝 −

𝑥

𝛽
 ]

𝑛

𝑖=1

 

=  −𝑛𝐼𝑛𝛽 − ∑ 𝑛𝑥𝑖

𝑖=1

 

Differentiating w.r.t 𝛽 gives: 

−
𝑛

𝛽
+

∑𝑛
𝑖=1

𝛽2
 

Setting to zero, we obtain the maximum likelihood estimate of 𝛽̂ as: 

                                                        𝛽̂ =
1

𝑛
∑ 𝑥𝑖

𝑛

𝑖=1

                                                                      (23) 
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Hazard and Reliability Functions of the Exponential Distribution 

The hazard function of the exponential distribution is given as: 

                                                       𝐻(𝑥) =

1
𝛽

𝑒𝑥𝑝 𝑒𝑥𝑝 −
𝑥
𝛽

 

1 − (1 −𝑒𝑥𝑝 𝑒𝑥𝑝 −
𝑥
𝛽

  )
=

1

𝛽
                                 (24) 

The reliability function is given as: 

                                               𝑅(𝑥) = 1 − (1 −𝑒𝑥𝑝 𝑒𝑥𝑝 −
𝑥

𝛽
 )

=𝑒𝑥𝑝 𝑒𝑥𝑝 
𝑥

𝛽
                                    (25) 

The T-X Family of Distributions 

Alzaatreh et al. (2013) proposed a new method for generating new distributions. They utilized 

a random variable T defined on the interval [𝛼, 𝛽], −∞ ≤  𝛼 <  𝛽 ≤  ∞ with CDF and PDF 

𝑅(𝑡) and 𝑟(𝑡) respectively and another random variable X with PDF and CDF 𝑓(𝑥) and 𝐹(𝑥) 

respectively. Using a transformation 𝑊(𝐹(𝑥)) of the CDF of X, they defined a new class of 

distribution by the CDF of the form: 

                                             𝐺(𝑥) =  ∫ 𝑟(𝑡)𝑑𝑡
𝑊(𝐹(𝑥))

𝛼

                                                           (26) 

where 𝑊(. ) satisfies the following conditions: 

(𝑖) 𝑊(𝐹(𝑥))𝜖[𝛼, 𝛽]  

(𝑖𝑖) 𝑊(𝐹(𝑥))𝑖𝑠 𝑚𝑜𝑛𝑜𝑡𝑜𝑛𝑖𝑐𝑎𝑙𝑙𝑦 𝑛𝑜𝑛 − 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 𝑎𝑛𝑑 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑏𝑙𝑒.  

(𝑖𝑖𝑖) 𝑊(𝐹(𝑥)) ⟶  𝛼𝑎𝑠𝑥 ⟶  −∞   

(𝑖𝑣) 𝑊(𝐹(𝑥))  ⟶  𝛽𝑎𝑠𝑥 ⟶  −∞  

They called the distribution in (26) the “T-X distribution.” Several functions of W(.) were 

defined by the authors and a list of new families of distribution using T as the generator random 

variable was outlined. 

Furthermore, if we let R(t) and r(t) be the CDF and PDF respectively of a continuous random 

variable T with support (−∞, ∞) , we let X be any continuous random variable with CDF and 

PDF 𝐹(𝑥) and 𝑓(𝑥) respectively, and we define 𝑊(𝐹(𝑥)) as the logit of the CDF 𝐹(𝑥), i.e., 

 

𝑊(𝐹(𝑥)) = 𝐼𝑛 [
𝐹(𝑥)

(1 − 𝐹(𝑥))
]     

then the CDF of the T-X distribution based on the logit function is given by: 



African Journal of Mathematics and Statistics Studies   

ISSN: 2689-5323    

Volume 8, Issue 4, 2025 (pp. 18-32) 

26  Article DOI: 10.52589/AJMSS-RUNRPJAZ 

   DOI URL: https://doi.org/10.52589/AJMSS-RUNRPJAZ 

www.abjournals.org 

             𝐺(𝑥) =  ∫ 𝑟(𝑡)𝑑𝑡
𝐼𝑛[

𝐹(𝑥)

(1−𝐹(𝑥))
]

−∞

= 𝑅[𝐼𝑛 [
𝐹(𝑥)

(1 − 𝐹(𝑥))
]]                                          (27) 

 ]  

The corresponding PDF of the T-X distribution in (27) is obtained by differentiating (27) w.r.t 

x to obtain 

                                           𝑔(𝑥) = 𝑟 [𝐼𝑛 [
𝐹(𝑥)

(1 − 𝐹(𝑥))
]]

ℎ(𝑥)

𝐹(𝑥)
                                            (28) 

where ℎ(𝑥) =  
𝑓(𝑥)

1 − 𝐹(𝑥)
 is the hazard function of the random variable X. 

Observe that 𝑅[𝐼𝑛[
𝐹(𝑥)

1−𝐹(𝑥)
]]   = 𝑅(𝑇) This implies that 𝐼𝑛 [

𝐹(𝑥)

(1−𝐹(𝑥))
] = 𝑇.  

The following result holds: 

𝑇 = 𝐼𝑛 [
𝐹(𝑥)

(1 − 𝐹(𝑥))
] 

𝑒𝑥𝑝 𝑒𝑥𝑝 𝑇 =  
𝐹(𝑥)

(1 − 𝐹(𝑋))
𝐹(𝑥) =  

𝑒𝑥𝑝 𝑒𝑥𝑝 𝑇 

(1 +𝑒𝑥𝑝 𝑒𝑥𝑝 𝑇 )
  

                                                𝑋 =  𝐹−1[𝑒𝑥𝑝𝑇(1 +  𝑒𝑥𝑝𝑇)]                                                (29)  

The relation in (29) is useful in simulating the random variable X of the T-X distribution by 

first simulating the random variable T, which is the generator, and then applying the 

transformation accordingly. We can also make use of (29) in calculating the rth moment of the 

T-X random variable X. 

The Gumbel-Exponential (GEXP) Distribution 

Suppose T is a random Gumbel variable with PDF and CDF given respectively by: 

 

                    𝑟(𝑡)

=
1

𝛼
𝑒𝑥𝑝 𝑒𝑥𝑝 −  (

𝑡 −  𝜀

𝛼
) 𝑒𝑥𝑝 [− 𝑒𝑥𝑝 𝑒𝑥𝑝 −  (

𝑡 −  𝜀

𝛼
) ]                                          

                                   𝑅(𝑡) =                                                          

−∞ < 𝑡 <  ∞, 𝛼 > 0, −∞ <  𝜀 <  ∞ 

 

Also, let X follow an exponential distribution with PDF and CDF, as indicated below, 

respectively: 
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𝑓(𝑥) =
1

𝛽
𝑒𝑥𝑝 𝑒𝑥𝑝 −  

𝑥

𝛽
  

𝐹(𝑥) = 1 −𝑒𝑥𝑝 𝑒𝑥𝑝 −
𝑥

𝛽
 𝑥 > 0, 𝛽 > 0  It follows that, 

𝐼𝑛 [
𝐹(𝑥)

(1 − 𝐹(𝑥))
] = 𝐼𝑛[𝑒𝑥𝑝 𝑒𝑥𝑝 −

𝑥

𝛽
− 1 ] 

The CDF of the GEXP distribution thus follows and it is given by: 

𝐺(𝑥) = [𝑅𝐼𝑛 (𝑒𝑥𝑝 𝑒𝑥𝑝 
𝑥

𝛽
− 1 )]  

 =𝑒𝑥𝑝 𝑒𝑥𝑝 [− 𝑒𝑥𝑝 𝑒𝑥𝑝 − (
𝐼𝑛[

𝑥

𝛽
−1 ]−𝜀

𝛼
)  ]  

 =𝑒𝑥𝑝 𝑒𝑥𝑝 [− 𝑒𝑥𝑝 𝑒𝑥𝑝 (
𝐼𝑛[𝑒𝑥𝑝𝑒𝑥𝑝  

𝑥

𝛽
−1 ]

𝛼
)   ]  

=𝑒𝑥𝑝 𝑒𝑥𝑝 [− 𝑒𝑥𝑝 𝑒𝑥𝑝 
𝜀

𝛼
(

−𝐼𝑛 [𝑒𝑥𝑝 𝑒𝑥𝑝 
𝑥
𝛽

− 1 ]

𝛼
)  ]  

𝑒𝑥𝑝 𝑒𝑥𝑝 [− 𝑒𝑥𝑝 𝑒𝑥𝑝 
𝜀

𝛼
𝑒𝑥𝑝 𝑒𝑥𝑝 𝐼𝑛 [𝑒𝑥𝑝 𝑒𝑥𝑝 

𝑥

𝛽
− 1 ]

−
1
𝛼

  ]  

=𝑒𝑥𝑝 𝑒𝑥𝑝 [− 𝑒𝑥𝑝 𝑒𝑥𝑝 
𝜀

𝛼
(𝑒𝑥𝑝 𝑒𝑥𝑝 

𝑥

𝛽
− 1)−

1
𝛼   ]  

                                      𝐺(𝑥)

=𝑒𝑥𝑝 𝑒𝑥𝑝 [−𝜃 𝑒𝑥𝑝 𝑒𝑥𝑝 (𝑒𝑥𝑝 𝑒𝑥𝑝 
𝑥

𝛽
− 1) −

1
𝛼  ]                                        (30) 

𝑥 > 0,𝑒𝑥𝑝 𝑒𝑥𝑝 
𝜀

𝛼
= 𝜃, −∞ < 𝜀 < ∞, 𝛼, 𝛽 > 0  

Equation (30) gives the CDF of the GEXP distribution. Differentiating (5.1) w.r.t x gives the 

PDF of the GEXP distribution given by: 

𝑔(𝑥) =
𝜃

𝛼𝛽
𝑒𝑥𝑝 𝑒𝑥𝑝 

𝑥

𝛽
(𝑒𝑥𝑝 𝑒𝑥𝑝 

𝑥

𝛽
− 1 )

−1−
1
𝛼

𝑒𝑥𝑝 𝑒𝑥𝑝 [−𝜃 (𝑒𝑥𝑝 𝑒𝑥𝑝 
𝑥

𝛽
− 1 )

−
1
𝛼

]                        (31) 

where 𝛼 and θ are shape parameters and 𝛽 is a scale parameter. 
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Moments of the Gumbel-Exponential Distribution 

The rth moments of the GEXP distribution can be obtained from the expression: 

      𝐸(𝑋𝑟) = ∫ 𝑥𝑟
∞

0

𝜃

𝛼𝛽
𝑒𝑥𝑝 𝑒𝑥𝑝 

𝑥

𝛽
 (𝑒𝑥𝑝 𝑒𝑥𝑝 

𝑥

𝛽
 − 1)

−1−
1
𝛼

𝑒𝑥𝑝 𝑒𝑥𝑝 [−𝜃 (𝑒𝑥𝑝 𝑒𝑥𝑝 
𝑥

𝛽
 − 1)

−
1
𝛼

] 𝑑𝑥       (32)  

  

Maximum Likelihood Estimation of the Parameters of the Gumbel-Exponential GEXP) 

Distribution 

For a random independent sample 𝑥1, 𝑥2, . . . , 𝑥𝑛  of size n, the likelihood function of the GEXP 

distribution is given by: 

𝐿 =  ∏ [
𝜃

𝛼𝛽
𝑒𝑥𝑝 𝑒𝑥𝑝 

𝑥𝑖

𝛽
 (𝑒𝑥𝑝 𝑒𝑥𝑝 

𝑥𝑖

𝛽
 − 1)

−1−
1
𝛼

𝑒𝑥𝑝 𝑒𝑥𝑝 [−𝜃 (𝑒𝑥𝑝 𝑒𝑥𝑝 
𝑥𝑖

𝛽
− 1 )

−
1
𝛼

] ]

𝑛

𝑖=1

 

 

The log-likelihood function is given by: 

𝐿 =  ∑ 𝐼𝑛 [
𝜃

𝛼𝛽
𝑒𝑥𝑝 𝑒𝑥𝑝 

𝑥𝑖

𝛽
 (𝑒𝑥𝑝 𝑒𝑥𝑝 

𝑥𝑖

𝛽
 − 1)

−1−
1
𝛼

𝑒𝑥𝑝 𝑒𝑥𝑝 [−𝜃 (𝑒𝑥𝑝 𝑒𝑥𝑝 
𝑥𝑖

𝛽
− 1 )

−
1
𝛼

] ]

𝑛

𝑖=1

 

= 𝑛(𝐼𝑛𝜃 − 𝐼𝑛𝛼 − 𝐼𝑛𝛽) + ∑
𝑥𝑖

𝛽

𝑛

𝑖=1

− (1 +
1

𝛼
) ∑

𝑥𝑖

𝛽

𝑛

𝑖=1

 − 1

− 𝜃 ∑ 𝐼𝑛 𝑒𝑥𝑝 𝑒𝑥𝑝

𝑛

𝑖=1

𝑒𝑥𝑝 𝑒𝑥𝑝 
𝑥𝑖

𝛽
− 1 −

1
𝛼 

Taking the partial derivative of the log-likelihood function w.r.t each of the parameters, we 

have: 

𝜕𝐿

𝜕𝛼
=  −

𝑛

𝛼
+

∑ 𝐼𝑛𝑛
𝑖=1 [𝑒𝑥𝑝 𝑒𝑥𝑝 

𝑥𝑖

𝛽
− 1 ]

2

𝛼

− 𝜃 ∑
(𝑒𝑥𝑝 𝑒𝑥𝑝 

𝑥𝑖

𝛽
− 1 )

−
1
𝛼

 𝐼𝑛 [𝑒𝑥𝑝 𝑒𝑥𝑝 
𝑥𝑖

𝛽
− 1 ]

𝛼2

𝑛

𝑖=1

                 (33) 

                                              
𝜕𝐿

𝜕𝛼
=  

𝑛

𝜃
− ∑ (𝑒𝑥𝑝 𝑒𝑥𝑝 

𝑥𝑖

𝛽
− 1 )

−
1
𝛼

𝑛

𝑖=1

                                                (34) 
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𝜕𝐿

𝜕𝛼
= −

𝑛

𝛽
+  ∑ −

𝑛

𝑖=1

𝑥𝑖

𝛽2
− (1 +

1

𝛼
) ∑ −

𝑛

𝑖=1

𝑥𝑖 𝑒𝑥𝑝 𝑒𝑥𝑝 
𝑥𝑖

𝛽
 

(𝑒𝑥𝑝 𝑒𝑥𝑝 
𝑥𝑖

𝛽
− 1 ) 𝛽2

− 𝜃 ∑
𝑥𝑖 𝑒𝑥𝑝 𝑒𝑥𝑝 

𝑥𝑖

𝛽
(𝑒𝑥𝑝 𝑒𝑥𝑝 

𝑥𝑖

𝛽
 − 1)

−1−
1
𝛼

 

𝛼𝛽2

𝑛

𝑖=1

 (35) 

On setting all the partial derivatives to zero and solving the system of equations iteratively, we 

obtain the maximum likelihood estimator of the parameters of the GUBXII distribution. 

The Hazard and Reliability Function of the Gumbel-Exponential (GEXP) Distribution 

The hazard function of the GEXP distribution is given by: 

                 𝐻(𝑥)

=

𝜃
𝛼𝛽

𝑒𝑥𝑝 𝑒𝑥𝑝 
𝑥
𝛽

𝑥
𝛽

 − 1)−1−
1
𝛼 𝑒𝑥𝑝 𝑒𝑥𝑝 [−𝜃 (𝑒𝑥𝑝

𝑥
𝛽

− 1)
−

1
𝛼

]  

1 −𝑒𝑥𝑝 𝑒𝑥𝑝 [−𝜃 (𝑒𝑥𝑝 𝑒𝑥𝑝 
𝑥
𝛽

− 1 )
−

1
𝛼

] 

                      (36) 

  

The reliability function of the GEXP distribution is given by: 

                                              𝑅(𝑥)

= 1 −𝑒𝑥𝑝 𝑒𝑥𝑝 [−𝜃 (𝑒𝑥𝑝 𝑒𝑥𝑝 
𝑥

𝛽
− 1 )

−
1
𝛼

]                                   (37)  
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RESULTS AND DISCUSSION 

Presentation of Data 

Here, we present an application of the GEXP distribution to lifetime data using two data sets. 

We also compare the fit of the Gumbel, exponential and the newly proposed GEXP 

distributions to the data sets in order to determine the flexibility of the newly proposed 

distribution in comparison to the classical Gumbel and exponential distributions. 

Data Used for Analysis 

Fitting the breaking stress of carbon fibers of 50 mm (gpa) data was used. The data set is 

unimodal and is approximately symmetric (Skewness = -0.13 and kurtosis = 0.34), while fitting 

the kevlar 49/epoxy strands failure times data (pressure at 90%) is multimodal, platykurtic, and 

approximately symmetric (Skewness = 0.35, kurtosis = 14.47). 

Discussion of Results 

Based on the information given about the first data set (breaking stress of carbon fibers data), 

the values of the log-likelihood obtained in each case helped in determining the maximum 

likelihood estimators of each distribution. The exponential gave −132.9944, Gumbel 

−92.3966, and the GEXP distribution −87.1243. The parameter estimates from Table 1 

reveal that the exponential scale parameter 𝛽̂  =  2.7595(0.3397). The exponential 

distribution has no shape parameter as the only parameter it has is the failure rate. The Gumbel 

distribution scale and location parameter are respectively obtained as: 𝛼̂  =
 0.19114(0.0791)𝜀̂ =  2.3106(0.1191).  

For the GEXP distribution, the scale and shape parameters are respectively gotten as: 𝛽̂  =
 0.1243(0.1923)𝛼 ̂ =  7.3502(11.3435)𝜃 =  12.5340(2.6921) with standard error of 

estimates in parenthesis. These all help in determining the shape, scale, location, i.e., where the 

bulk lies for the distribution. The AIC, a model performance statistic, reported the smallest 

value of 177.7 for GWD and 180.2486 for the GEXP distribution while the Exponential and 

Gumbel distribution gave 267.9887 and 188.7932 respectively, an indicator of the superiority 

and flexibility of this new distribution in modelling unimodal and approximately symmetric 

data. Also, it could be inferred that Exponential distribution fits the least to this kind of data. 

Table 1: Maximum likelihood estimates for breaking stress of carbon fibers data 

(standard errors of estimates in parenthesis) 

 

Distributions Exponential Gumbel GEXP GWD 

Parameters 𝛽̂ = 2.7595 𝛼̂ = 0.1914 𝛽̂ = 0.1243 𝛽̂ = 3.4359 

Estimates (0.3397) (0.0791) (0.1923) (1.1494) 

  𝜀̂ = 2.3106 𝛼̂ = 7.3502 𝛼̂ = 5.5673 

  (0.1191) 11. 3435 2.8064 

   𝜃 = 12.5340 𝜃 = 2.4231 

   (2.6921) (0.5078) 

Log Likelihood −132.9944 − 92.3966 − 87.1243 − 84.83 

AIC 267.9887 188.7932 180.2486 177.7 
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From Table 2, the second data set (Kevlar 49/epoxy strands failure times data (pressure at 

90%)) which is a multi-modal data, the log-likelihood of the parameter of the exponential 

distribution gave −103.4793, Gumbel −122.6389, and the GEXP distribution −100.3549. 

The parameter estimates reveal that the exponential scale parameter 𝛽̂  =  1.0249(0.1019). 

The Gumbel distribution scale and location parameter are respectively obtained as: 𝛼 ̂ =
 0.6494(0.0538)𝜀̂ =  0.6054(0.0674) while the GEXP distribution with scale shape and 

location parameter 𝛽 ̂ =  0.2533(0.0645), 𝛼̂ =  3.3575(0.5994) 𝑎𝑛𝑑 𝜃 =  1.6260(0.2813) 

respectively.  

The AIC reports the smallest value of 206.7907 for the GEXP distribution and 208.5 for the 

GWD while the Exponential and Gumbel distribution gave 208.9586 and 249.2778 

respectively—an indicator of the fitness and flexibility of the proposed (GEXP) distribution in 

modelling multimodal data. 

Table 2: Maximum likelihood estimates for Kevlar 49/epoxy strands failure times data 

(pressure at 90%) (Standard errors of estimates in parenthesis) 

 

CONCLUSION 

The rationale behind the proposition of a new family of probability distributions, either by 

combining two or more distributions or adding extra parameters to an existing distribution, is 

to make them more flexible and adaptive in capturing real life data. Here, we have tested the 

fitness and flexibility of the newly proposed GEXP distribution in comparison with the GWD 

and the classical Gumbel and exponential distributions using two sets of lifetime data, and the 

results obtained has clearly shown that the proposed distribution is more flexible and adaptable 

in capturing real life data than existing ones. 

 

 

  

Distributions     Exponential     Gumbel      GEXP     GWD 

Parameters 𝛽̂ = 1.0249 𝛼̂ = 0.6494 𝛽̂ = 0.2533 𝛽̂ = 1.8064 

Estimates (0.1019) (0.0538) (0.0645) (0.5037) 

  𝜀̂ = 0.6054 𝛼̂ = 3.3575 𝛼̂ = 3.2713 

  (0.0674) (0.5994) 0.6459 

   𝜃 = 1.6260 𝜃 = 0.9200 

   (0.2813) (0.1594) 

Log Likelihood −103.4793 − 122.6389 − 100.3549 − 100.23 

AIC   208.9586 249.2778 206.7097  208.5 
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