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ABSTRACT: This study proposed and evaluated three novel 

robust estimators—Robust Shrinkage Generalized Method of 

Moments (RSGMM), Panel Adaptive Ridge GMM (PARGMM), 

and Heteroscedasticity-Autocorrelation-Robust Shrinkage GMM 

(HARSGMM)—for panel data models where classical 

assumptions are frequently violated. The estimators were designed 

to simultaneously address multicollinearity, heteroscedasticity, 

and autocorrelation, which commonly undermine the reliability of 

conventional estimators such as Ordinary Least Squares (OLS), 

Feasible Generalized Least Squares (FGLS), First Difference 

(FD), and Between Estimators (BTW). Using Monte Carlo 

simulations, the performance of all estimators were assessed 

across three scenarios of increasing violation severity and varying 

sample sizes. Performance metrics include bias, variance, mean 

squared error (MSE), and efficiency. Results revealed that 

HARSGMM and RSGMM consistently outperformed traditional 

estimators in terms of lower bias and MSE, particularly in settings 

with high assumption violations and larger samples. Even under 

baseline conditions with minimal violations, the proposed 

estimators maintained superior efficiency. These findings support 

the adoption of HARSGMM and RSGMM as more reliable 

alternatives for empirical researchers dealing with complex panel 

datasets. The study concluded with recommendations for broader 

application and integration of these robust techniques into 

econometric software and policy-oriented research. 

KEYWORDS: Panel Data Models, Multicollinearity, 

Heteroscedasticity, Autocorrelation, GMM, Simulation Study. 
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INTRODUCTION 

Linear regression models serve as fundamental components of econometric analysis and are 

extensively employed for evaluating time series, cross-sectional, and panel data (Baltagi, 2005; 

Greene, 2008; Wooldridge, 2010). Despite their widespread utilization, the dependability of 

these models critically hinges on fulfilling the assumptions of the Classical Linear Regression 

Model (CLRM)—notably, the lack of multicollinearity, homoscedasticity of the error terms, 

and serial independence. Violations of these presumptions are common in real-world panel 

data, leading to inefficiency, bias, or inconsistency in parameter estimates (Johnston, 1972; 

Gujarati, 1995).  

Multicollinearity, characterized by high correlation among regressors, results in inflated 

variances and unstable estimates within ordinary least squares (OLS) regression (Hoerl & 

Kennard, 1970; Wooldridge, 2010; Sevind & Gktaş, 2019). Ridge regression, initially proposed 

by Hoerl and Kennard (1970), offers a solution through biased estimation methodologies that 

mitigate variance. Further developments, including Liu estimators (Liu, 1993; Akdeniz & 

Kaciranlar, 1995) and their variants, have been devised to enhance robustness in environments 

burdened by multicollinearity (Tugba & Ozkale, 2019; Roozbeh et al., 2021). 

Heteroscedasticity, defined as non-constant variance of errors across observations, poses 

particular challenges in cross-sectional and panel datasets. It undermines the efficiency of OLS 

estimates and affects hypothesis testing procedures (Cochrane & Orcutt, 1949; Dawoud & 

Kaanlar, 2015). Similarly, autocorrelation—correlation of error terms across time—induces 

biased standard errors and compromises inferential reliability in dynamic models (Durbin & 

Watson, 1950; Prais & Winsten, 1958; Hildreth & Lu, 1960). Estimators, such as Feasible 

Generalized Least Squares (FGLS) and methods introduced by Cochrane and Orcutt (1949) 

and Rao and Griliches (1969), provide partial remedies but are sensitive to model specification 

errors. While the existing literature addresses these issues individually, limited research has 

examined scenarios where multicollinearity, heteroscedasticity, and autocorrelation occur 

concomitantly. This gap is significant, given that such violations frequently coexist in applied 

contexts (Ozkale & Tugba, 2015; Lukman et al., 2020; Wondola et al., 2020).  

To bridge this methodological deficiency, this study proposes three innovative estimators 

tailored for panel data, designed to exhibit robustness relative to current estimators under 

conditions of simultaneous multicollinearity, heteroscedasticity, and autocorrelation. These 

estimators encompass the Robust Shrinkage Generalized Method of Moments (RSGMM), 

Panel Adaptive Ridge GMM (PARGMM), and Heteroscedasticity-Autocorrelation-Robust 

Shrinkage GMM (HARSGMM). They integrate shrinkage techniques and ridge penalization 

within a GMM framework to enhance accuracy and efficiency in the presence of multiple 

violations of classical assumptions. Conversely, traditional estimators considered in this 

context include OLS, FGLS, First-Differenced (FD), and between (BTW) estimators (Baltagi, 

2005; Greene, 2008; Wooldridge, 2010). The findings of this research not only empirically 

validate the efficacy of the proposed methods but also offer practical guidance for applied 

econometric analysis.  

As a result, this work contributes to the expanding body of literature on robust estimation by 

introducing novel, efficient tools for researchers addressing complex data structures 

characterized by the simultaneous breakdown of classical assumptions. 
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METHODOLOGY 

This study employs a simulation-based comparative analysis of robust estimators designed to 

address common violations of classical linear regression assumptions in panel data models. 

Explicitly, the proposed estimators are evaluated in terms of bias, variance, and mean squared 

error (MSE) under varying levels of multicollinearity, heteroscedasticity, and autocorrelation. 

The estimators are developed by extending the Generalized Method of Moments (GMM) 

framework and incorporating shrinkage and adaptive regularization strategies to improve 

estimator performance. Monte Carlo experiments are used to simulate multiple empirical 

scenarios: (i) concurrent severe violations of assumptions, (ii) moderate violations, and (iii) 

ideal conditions. Performance is measured via bias, variance, and mean squared error (MSE) 

across a range of sample sizes and correlation structures. The first of these estimators is detailed 

below. 

Proposed Estimators  

Robust Shrinkage GMM (RSGMM)  

The Robust Shrinkage GMM (RSGMM) estimator is introduced to enhance the performance 

of traditional GMM estimators under conditions of multicollinearity and heteroscedasticity. 

While the Generalized Method of Moments (GMM) proposed by Hansen (1982) is known for 

its consistency and efficiency, it can suffer from inflated variances when regressors are highly 

collinear. To address this, the RSGMM integrates a shrinkage parameter within the GMM 

framework, drawing from the ridge regression approach proposed by Hoerl and Kennard 

(1970).  

General Model Setup  

The general panel data model is expressed as: 

𝑌𝑖 = 𝑋𝑖𝛽 + 𝜀𝑖#(3.1)  

where: 

𝑌𝑖 is the vector of dependent variables for the 𝑖-th individual. 

𝑋𝑖 is the matrix of regressors for the 𝑖-th individual, of dimension 𝑛 × 𝑘 (where 𝑘 is the number 

of regressors). 

𝛽 is the vector of parameters to be estimated, of dimension 𝑘 × 1. 

𝜀𝑖 is the error term, representing deviations between the observed 𝑌𝑖 and its expected value 

based on the model. 

The objective of RSGMM is to estimate the parameter vector 𝛽 in a way that minimizes the 

influence of multicollinearity and heteroscedasticity while leveraging moment conditions in 

the data. 
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GMM Objective Function  

GMM estimates β by minimizing the following objective function: 

𝑄(𝛽) =
1

𝑛
∑ 𝑔𝑖(𝛽)′𝑊𝑖𝑔𝑖(𝛽)#

𝑛

𝑖=1

(3.2)  

where     𝑔𝑖(𝛽) = 𝑍𝑖
′(𝑌𝑖 − 𝑋𝑖𝛽) 

and Zi is the instrument matrix, while Wi is the weighting matrix, typically set as the inverse 

of the covariance matrix of the moment conditions: 

𝑊𝑖 = 𝛴𝑖
−1#(3.3)  

Incorporating shrinkage parameter to regularize the GMM estimation under multicollinearity, 

a shrinkage term λI is added, yielding the RSGMM estimator: 

𝛽ˆ𝑅𝑆𝐺𝑀𝑀 = (𝑋′𝑊𝑋 + 𝜆𝐼)−1𝑋′𝑊𝑌#(3.4)  

where: 

𝑋 is the stacked matrix of all regressors across individuals. 

𝑌 is the stacked vector of dependent variables across individuals. 

𝑊 is the block diagonal matrix containing the weighting matrices 𝑊𝑖 for each individual. 

𝜆𝐼 is the shrinkage term, where 𝜆 is a non-negative constant (the regularization parameter) and 

𝐼 is the identity matrix of size 𝑘 × 𝑘. 

Role and Impact of the Shrinkage Parameter  

The shrinkage parameter λ is critical in balancing bias and variance. While it introduces a 

degree of bias into the estimation, it significantly reduces the estimator’s variance, particularly 

in the presence of multicollinearity (Hoerl & Kennard, 1970). As a result, the overall mean 

squared error (MSE) may decrease, leading to more reliable estimates in finite samples.  

Properties of the RSGMM Estimator 

The RSGMM estimator possesses several desirable statistical properties:  

• Consistency: As n → ∞, βˆRSGMM converges in probability to the true β, provided the 

moment conditions hold Hansen (1982). 

• Efficiency: When the weighting matrix W = Σ−1 is correctly specified, the estimator achieves 

efficiency within the class of GMM estimators.  

• Robustness: The inclusion of λ enhances robustness to multicollinearity, yielding more stable 

parameter estimates in finite samples. 
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Final Expression for RSGMM 

In summary, the RSGMM estimator is formally expressed as: 

𝛽ˆ𝑅𝑆𝐺𝑀𝑀 = (𝑋′𝑊𝑋 + 𝜆𝐼)−1𝑋′𝑊𝑌#(3.5)  

This formulation integrates the flexibility and moment-based rigor of GMM with the stability 

and regularization strengths of ridge regression, offering a viable solution to multicollinearity 

and heteroscedasticity in panel data models. 

Panel Adaptive Ridge GMM (PARGMM) 

The Panel Adaptive Ridge GMM (PARGMM) estimator is proposed as an extension of the 

Robust Shrinkage GMM (RSGMM) to account for fixed effects in panel data models. It 

addresses the twin challenges of individual-specific heterogeneity and multicollinearity, which 

commonly arise due to repeated measurements over time. While traditional GMM methods 

offer consistency and efficiency; they can be compromised by correlated regressors and 

unobserved fixed effects. The PARGMM framework incorporates both fixed effects and a 

regularization term, enhancing estimator stability and robustness.  

Model Specification for PARGMM 

The PARGMM model is specified as: 

𝑌𝑖𝑡 = 𝑋𝑖𝑡𝛽 + 𝛼𝑖 + 𝜀𝑖𝑡#(3.6)  

where: 

𝑌𝑖𝑡 is the dependent variable for individual 𝑖 at time 𝑡. 

𝑋𝑖𝑡 is the matrix of regressors for individuals 𝑖 at time 𝑡, of dimension 𝑇 × 𝑘 (where 𝑘 is the 

number of regressors and 𝑇 is the time period). 

𝛽 is the vector of parameters to be estimated, of dimension 𝑘 × 1. 

𝛼𝑖 represents the individual-specific fixed effects for the 𝑖-th individual. 

𝜀𝑖𝑡 is the error term, capturing the deviations between the observed 𝑌𝑖𝑡 and its expected value 

based on the model. 

The term 𝛼𝑖 captures time-invariant individual-specific characteristics that are not included in 

𝑋𝑖𝑡, thus controlling for unobserved heterogeneity in the panel data structure.  
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GMM Objective Function for Panel Data  

The PARGMM estimator is constructed using the extended GMM objective function: 

𝑄(𝛽) =
1

𝑁𝑇
∑ ∑ 𝑔𝑖𝑡(𝛽)′𝑊𝑖𝑡𝑔𝑖𝑡(𝛽)#(3.7) 

𝑇

𝑡=1

𝑁

𝑖=1

   

where:    𝑔𝑖𝑡(𝛽) = 𝑍𝑖𝑡
′ (𝑌𝑖𝑡 − 𝑋𝑖𝑡𝛽 − 𝛼𝑖) 

and 𝑍𝑖𝑡 denotes the instrument matrix. The weighting matrix 𝑊𝑖𝑡 is set to the inverse of the 

conditional error covariance: 

𝑊𝑖𝑡 = 𝛴𝑖𝑡
−1#(3.8)  

This weighting matrix adjusts for heteroscedasticity and serial correlation, which are typical in 

panel data applications. 

Shrinkage Regularization in PARGMM  

To mitigate the effects of multicollinearity in panel settings, a shrinkage parameter λ is 

introduced into the estimation framework, yielding the PARGMM estimator: 

𝛽ˆ𝑃𝐴𝑅𝐺𝑀𝑀 = (𝑋′𝑊𝑋 + 𝜆𝐼)−1𝑋′𝑊𝑌#(3.9)  

where: 

𝑋 is the stacked matrix of regressors for all individuals and periods, accounting for both the 

individual and time dimensions. 

𝑌 is the stacked vector of dependent variables for all individuals and time periods. 

𝑊 is the block diagonal matrix containing the weighting matrices 𝑊𝑖𝑡 for each individual and 

time period. 

𝜆𝐼 is the shrinkage term, where 𝜆 is a non-negative regularization parameter and 𝐼 is the identity 

matrix of size 𝑘 × 𝑘. 

Role of the Shrinkage Parameter  

The regularization term λ serves two critical functions:  

• Multicollinearity Mitigation: The repeated nature of panel measurements often induces 

collinearity among regressors. Shrinkage helps to control this by stabilizing coefficient 

estimates (Hoerl & Kennard, 1970).  

• Bias-Variance Trade-off: While the inclusion of λ introduces bias, it significantly reduces 

estimator variance, improving the overall mean squared error (MSE).  
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Properties of the PARGMM Estimator 

The PARGMM estimator exhibits the following properties:  

• Consistency: Under correct model specification and valid moment conditions, the estimator 

is consistent as both N → ∞ and T → ∞ (Hansen, 1982).  

• Efficiency: The use of Wit = Σ−1; it ensures that the estimator achieves minimal variance 

among consistent estimators. 

• Adaptation to Panel Structure: The incorporation of fixed effects αi makes the model well-

suited to individual-level heterogeneity.  

• Robustness to Multicollinearity: The Ridge-type penalty improves stability, especially in 

small samples or when regressors are highly correlated.  

Final Expression for PARGMM  

The final expression for the Panel Adaptive Ridge GMM estimator is: 

𝛽ˆ𝑃𝐴𝑅𝐺𝑀𝑀 = (𝑋′𝑊𝑋 + 𝜆𝐼)−1𝑋′𝑊𝑌           (3.10) 

This estimator combines the structural strengths of GMM with fixed effects modeling and the 

robustness of ridge regularization, making it a powerful tool for analyzing panel data models 

plagued by multicollinearity and unobserved heterogeneity.  

Heteroscedasticity-Autocorrelation-Robust Shrinkage GMM (HARSGMM)  

The Heteroscedasticity-Autocorrelation-Robust Shrinkage GMM (HARSGMM) estimator 

extends the traditional GMM framework by simultaneously addressing three major violations 

of the classical linear regression assumptions: multicollinearity, heteroscedasticity, and 

autocorrelation. While GMM can accommodate some violations separately, HARSGMM 

incorporates an integrated solution that enhances robustness and efficiency in panel data 

models with complex error structures.  

Model Specification for HARSGMM  

The HARSGMM model incorporates an autoregressive error structure and allows for 

heteroscedastic variances across individuals. The model is specified as: 

𝑌𝑖 = 𝑋𝑖𝛽 + 𝜌𝜀𝑖−1 + 𝜀𝑖, 𝜀𝑖 ∼ 𝑁(0, 𝜎𝑖
2)#(3.11)  

where: 

𝑌𝑖 is the dependent variable for the 𝑖-th individual. 

𝑋𝑖 is the matrix of regressors for the 𝑖-th individual, of dimension 𝑛 × 𝑘. 

𝛽 is the vector of parameters to be estimated, of dimension 𝑘 × 1. 

𝜌 is the autocorrelation coefficient that captures the correlation between successive error terms. 
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𝜀𝑖 is the error term, which follows a normal distribution with heteroscedastic variance 𝜎𝑖
2. This 

means that the variance of the error term varies among individuals. 

The autoregressive term 𝜌𝜀𝑖−1 models temporal dependence in errors, while 𝜎𝑖
2 allows for 

individual-specific error variance.  

GMM Objective Function for HARSGMM  

The HARSGMM estimator minimizes the GMM objective function:  

𝑄(𝛽) =
1

𝑛
∑ 𝑔𝑖(𝛽)′𝑊𝑖𝑔𝑖(𝛽)#(3.12) 

𝑛

𝑖=1

   

where Zi is the instrument matrix and Wi is a weighting matrix defined as:  

𝑊𝑖 = 𝛴𝑖
−1#(3.13)  

The matrix 𝛴𝑖
−1 is the covariance matrix of the error terms, capturing both heteroscedasticity 

and autocorrelation.  

Shrinkage Regularization in HARSGMM  

To stabilize the estimator under multicollinearity, a shrinkage parameter λ is introduced, 

resulting in the HARSGMM estimator: 

𝛽ˆ𝐻𝐴𝑅𝑆𝐺𝑀𝑀 = (𝑋′𝑊𝑋 + 𝜆𝐼)−1𝑋′𝑊𝑌#(3.14)  

where: 

𝑋 is the stacked matrix of regressors for all individuals. 

𝑌 is the stacked vector of dependent variables for all individuals. 

𝑊 is the block diagonal matrix containing the weighting matrices 𝑊𝑖 for each individual, which 

accounts for heteroscedasticity and autocorrelation. 

𝜆𝐼 is the shrinkage term, where 𝜆 is a non-negative regularization parameter and 𝐼 is the identity 

matrix of size 𝑘 × 𝑘. 

Role of the Shrinkage Parameter and Robustness to Assumption Violations 

HARSGMM estimator combines multiple layers of robustness:  

• Multicollinearity: The inclusion of λ regularizes the estimator by controlling for large 

variances in the presence of correlated regressors (Hoerl & Kennard, 1970).  

• Heteroscedasticity: The weighting matrix 𝑊𝑖 accounts for heterogeneity in error variances 

among individuals, improving estimation efficiency.  

• Autocorrelation: The autoregressive error structure 𝜌𝜀𝑖−1 models temporal dependence, 

reducing bias and inefficiency from serially correlated errors. These adjustments make 
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HARSGMM particularly suitable for complex panel data settings where standard estimation 

techniques fail to produce reliable inferences.  

Properties of the HARSGMM Estimator 

The HARSGMM estimator offers several desirable properties: 

• Consistency: The estimator is consistent as n → ∞, assuming valid instrument conditions and 

correct model specification (Hansen, 1982).  

• Efficiency: When 𝑊𝑖 = 𝛴𝑖
−1, HARSGMM achieves asymptotic efficiency within the class of 

GMM estimators.  

• Robustness: The estimator remains robust to the joint presence of multicollinearity, 

heteroscedasticity, and autocorrelation, offering improved inference in empirical applications.  

 

Final Expression for HARSGMM  

The final form of the Heteroscedasticity-Autocorrelation-Robust Shrinkage GMM estimator 

is: 

𝛽ˆ𝐻𝐴𝑅𝑆𝐺𝑀𝑀 = (𝑋′𝑊𝑋 + 𝜆𝐼)−1𝑋′𝑊𝑌            (3.15) 

This unified formulation enables efficient and reliable parameter estimation in the presence of 

multiple violations of classical regression assumptions. 

Simulation Design and Performance Evaluation 

To assess the finite-sample performance of the proposed estimators—Robust Shrinkage GMM 

(RSGMM), Panel Adaptive Ridge GMM (PARGMM), and Heteroscedasticity-Autocorrelation 

Robust Shrinkage GMM (HARSGMM)—a comprehensive simulation study is conducted. The 

goal is to evaluate estimator behavior under varying levels of multicollinearity, 

heteroscedasticity, and autocorrelation. This section details the data-generating process (DGP), 

error structure, performance metrics, and Monte Carlo simulation setup. 

Data-Generating Process (DGP)  

The following linear panel data model considered: 

𝑌𝑖𝑡 = 𝑋𝑖𝑡𝛽 + 𝛼𝑖 + 𝜀𝑖𝑡#(3.16)  

where Yit is the dependent variable, Xit is the vector of regressors, β is the true coefficient 

vector, αi represents individual fixed effects, and εit is the error term. The regressors Xit are 

drawn from a multivariate normal distribution: 

𝑋𝑖𝑡 ∼ 𝑁(0, 𝛴𝑋)#(3.17)  

The covariance matrix 𝛴𝑋 introduces multicollinearity via the correlation parameter ρ: 
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Distributions Considered  

The simulation incorporates different distributions for 𝑋𝑖𝑡 to test robustness:  

i. Normal Distribution: 𝑋𝑖𝑡 ∼ 𝑁(0,1), which represents well-behaved data with no 

extreme values. 

ii. Uniform Distribution: 𝑋𝑖𝑡 ∼ 𝑈(0,1), which generates evenly distributed data between 

0 and 1. 

iii. Exponential Distribution: 𝑋𝑖𝑡 ∼ 𝐸𝑥𝑝(𝜆), which introduces skewness to simulate right-

skewed data. 

iv. Log-normal Distribution: 𝑋𝑖𝑡 ∼ 𝐿𝑜𝑔𝑁(0,1), to model data with a long right tail, 

reflecting more extreme values. 

Error Term Design and Assumption Violations 

Heteroscedasticity:  

𝜀𝑖𝑡 = 𝜎𝑖𝑢𝑖𝑡 , 𝑢𝑖𝑡 ∼ 𝑁(0,1)#(3.18)  

    𝜎𝑖
2 = 𝜎0

2(1 + 𝛾𝑋𝑖1)              (3.19) 

Autocorrelation:   𝜀𝑖𝑡 = 𝜌𝜀𝑖,𝑡−1 + 𝑢𝑖𝑡 ,   𝑢𝑖𝑡 ∼ 𝑁(0, 𝜎2)           (3.20) 

 

Combined Heteroscedasticity and Autocorrelation:  

𝜀𝑖𝑡 = 𝜌𝜀𝑖,𝑡−1 + 𝜎𝑖𝑢𝑖𝑡 , 𝑢𝑖𝑡 ∼ 𝑁(0,1)                  (3.21) 

Levels of Assumption Violations 

The following parameter values are used to simulate varying violation levels:  

- Multicollinearity: ρ = {0.1, 0.5, 0.95}  

- Heteroscedasticity: γ = {0, 1, 3}  

- Autocorrelation: ρ = {0, 0.5, 0.9} Sample Sizes Three panel configurations are 

considered: 

- Small: N = 50, T = 10 • Moderate: N = 100, T = 20  

- Large: N = 500, T = 50  

Performance Metrics 

Bias:   𝐵𝑖𝑎𝑠(𝛽ˆ) = 𝐸[𝛽ˆ] − 𝛽      

 (3.22) 

Variance:  𝑉𝑎𝑟(𝛽ˆ) = 𝐸[(𝛽ˆ − 𝐸[𝛽ˆ])2]      (3.23) 
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Mean Squared Error (MSE): 𝑀𝑆𝐸(𝛽ˆ) = 𝐵𝑖𝑎𝑠(𝛽ˆ)2 + 𝑉𝑎𝑟(𝛽ˆ)   (3.24) 

Relative Efficiency (RE):   𝑅𝐸(𝛽ˆ, 𝛽ˆ𝐺𝑀𝑀) =
𝑉𝑎𝑟(𝛽ˆ𝐺𝑀𝑀)

𝑉𝑎𝑟(𝛽ˆ)
    (3.25) 

Robustness:  

For Heteroscedasticity: 𝑉𝑎𝑟ℎ𝑒𝑡𝑒𝑟𝑜(𝛽ˆ) > 𝑉𝑎𝑟ℎ𝑜𝑚𝑜𝑠𝑘(𝛽ˆ)    

 (3.26) 

For Autocorrelation: 𝑉𝑎𝑟𝐴𝑅(1)(𝛽ˆ) > 𝑉𝑎𝑟𝑛𝑜 𝑎𝑢𝑡𝑜𝑐𝑜𝑟𝑟(𝛽ˆ)    (3.27) 

For Multicollinearity:  𝜅(𝑋) =
𝜎𝑚𝑎𝑥(𝑋)

𝜎𝑚𝑖𝑛(𝑋)
      

 (3.28) 

Monte Carlo Design  

Each scenario is simulated 1000 times to ensure stable and reliable results. The parameter 

estimates across replications are used to compute all performance metrics.  

Simulation Procedure 

The simulation steps are:  

- Generate synthetic data for Xit, Yit, εit.  

- Estimate parameters using RSGMM, PARGMM, and HARSGMM.  

- Compute bias, variance, MSE, RE, and robustness measures.  

- Repeat steps 1–3 for 1000 replications. 

- Analyze the results across violation levels and sample sizes.  

This structured simulation design allows for comprehensive evaluation of the proposed 

estimators, ensuring their reliability under realistic econometric conditions. 

 

ANALYSIS AND RESULTS 

Performance under Low Multicollinearity, No Heteroscedasticity, and No 

Autocorrelation (Baseline Scenario) 

Table 1 presents the performance of the proposed estimators—RSGMM, PARGMM, and 

HARSGMM—alongside traditional estimators including OLS, FGLS, First-Differenced (FD), 

and Between (BTW) under Scenario C1. This baseline scenario assumes favorable conditions: 

low multicollinearity, and the absence of both heteroscedasticity and autocorrelation. It 

provided a benchmark to evaluate the relative efficiency of the proposed methods under ideal 

model assumptions.  

Small Sample (N = 50, T = 10): In small samples, HARSGMM yielded the best performance 

across all criteria, with the lowest MSE (0.0920), lowest variance (0.0893), and highest 
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efficiency (1.7468). RSGMM also performed strongly, with an MSE of 0.1002 and efficiency 

of 1.5279. PARGMM trailed slightly behind with an MSE of 0.1097. OLS, in contrast, showed 

a much higher MSE of 0.2158, confirming its lower efficiency in small samples even under 

ideal conditions. 

Moderate Sample (N = 100, T = 20): With a moderate sample size, the trend remained 

consistent: HARSGMM and RSGMM outperformed the classical estimators, achieving MSEs 

of 0.0820 and 0.0897 respectively. PARGMM again followed with a slightly higher MSE of 

0.0977. Among the traditional methods, OLS exhibited an MSE of 0.1943, nearly double that 

of HARSGMM.  

Large Sample (N = 500, T = 50): In the large sample scenario, all estimators benefited from 

increased precision; however, HARSGMM continued to dominate with the lowest MSE 

(0.0738), followed by RSGMM (0.0789) and PARGMM (0.0867). OLS, FGLS, and FD 

showed improvements in MSE but still remain less efficient compared to the proposed 

estimators. These results reinforce the consistent robustness and efficiency of HARSGMM and 

RSGMM even when model assumptions are not violated.   

Summary Insight: The results from Scenario C1 validate the superior performance of the 

proposed estimators under baseline conditions. HARSGMM emerged as the most efficient 

estimator across all sample sizes, closely followed by RSGMM. Even in the absence of 

heteroscedasticity and autocorrelation, OLS and its traditional counterparts lagged behind in 

terms of bias, variance, and MSE. These findings highlight the practical value of using robust 

GMM based estimators, which offer efficiency gains not only under model violations but also 

in ideal scenarios. 

Table 1: Performance Comparison of Estimators under Low Multicollinearity, No 

Heteroscedasticity, and No Autocorrelation (Baseline) 

Estimator Bias Variance MSE Efficiency Sample Size 

Scenario C3: Low Multicollinearity, No Heteroscedasticity, and No Autocorrelation [Baseline] 

RSGMM 0.0031 0.0977 0.1002 1.5279 Small Sample (𝑁 = 50, 𝑇 = 10) 

PARGMM 0.0042 0.1053 0.1097 1.2718 Small Sample (𝑁 = 50, 𝑇 = 10) 

HARSGMM 0.0029 0.0893 0.0920 1.7468 Small Sample (𝑁 = 50, 𝑇 = 10) 

OLS 0.0087 0.2089 0.2158 1.0000 Small Sample (𝑁 = 50, 𝑇 = 10) 

FGLS 0.0073 0.1912 0.1965 1.1371 Small Sample (𝑁 = 50, 𝑇 = 10) 

FD 0.0065 0.1695 0.1747 1.2701 Small Sample (𝑁 = 50, 𝑇 = 10) 

BTW 0.0092 0.1978 0.2066 1.0237 Small Sample (𝑁 = 50, 𝑇 = 10) 

RSGMM 0.0038 0.0857 0.0897 1.4582 Moderate Sample (𝑁 = 100, 𝑇 = 20) 

PARGMM 0.0049 0.0924 0.0977 1.3212 Moderate Sample (𝑁 = 100, 𝑇 = 20) 

HARSGMM 0.0042 0.0785 0.0820 1.6326 Moderate Sample (𝑁 = 100, 𝑇 = 20) 

OLS 0.0062 0.1881 0.1943 1.0000 Moderate Sample (𝑁 = 100, 𝑇 = 20) 

FGLS 0.0054 0.1707 0.1762 1.1118 Moderate Sample (𝑁 = 100, 𝑇 = 20) 

FD 0.0053 0.1512 0.1563 1.2340 Moderate Sample (𝑁 = 100, 𝑇 = 20) 

BTW 0.0067 0.1790 0.1852 1.0237 Moderate Sample (𝑁 = 100, 𝑇 = 20) 

RSGMM 0.0040 0.0754 0.0789 1.4575 Large Sample (𝑁 = 500, 𝑇 = 50) 

PARGMM 0.0052 0.0814 0.0867 1.3206 Large Sample (𝑁 = 500, 𝑇 = 50) 

HARSGMM 0.0038 0.0701 0.0738 1.6329 Large Sample (𝑁 = 500, 𝑇 = 50) 



African Journal of Mathematics and Statistics Studies   

ISSN: 2689-5323    

Volume 8, Issue 4, 2025 (pp. 1-17) 

13  Article DOI: 10.52589/AJMSS-YWOBIAW1 

   DOI URL: https://doi.org/10.52589/AJMSS-YWOBIAW1 

www.abjournals.org 

OLS 0.0057 0.1723 0.1781 1.0000 Large Sample (𝑁 = 500, 𝑇 = 50) 

FGLS 0.0049 0.1562 0.1618 1.0876 Large Sample (𝑁 = 500, 𝑇 = 50) 

FD 0.0045 0.1392 0.1437 1.1894 Large Sample (𝑁 = 500, 𝑇 = 50) 

BTW 0.0059 0.1679 0.1723 1.0235 Large Sample (𝑁 = 500, 𝑇 = 50) 

Source: Researcher’s analysis output from R. 

Performance under Moderate Multicollinearity, Heteroscedasticity, and Autocorrelation 

Violation Scenarios 

Table 2 presents a comparative evaluation of the proposed estimators—RSGMM, PARGMM, 

and HARSGMM—alongside traditional methods such as OLS, FGLS, First Differenced (FD), 

and Between (BTW) estimators. The evaluation was conducted under a scenario (C2) 

characterized by moderate multicollinearity, heteroscedasticity, and autocorrelation, with 

results reported for small, moderate, and large sample sizes.  

Small Sample (N = 50, T = 10): In this setting, the proposed HARSGMM exhibited the lowest 

mean squared error (MSE) of 0.1379 and the lowest variance (0.1335), followed closely by 

RSGMM (MSE = 0.1463). Both estimators demonstrated superior bias control compared to 

OLS and FGLS. OLS yielded the highest MSE (0.2416), reaffirming its inefficiency in the 

presence of simultaneous assumption violations. PARGMM performed moderately well but 

with a slightly higher MSE (0.1649) than RSGMM and HARSGMM. In terms of relative 

efficiency, HARSGMM showed the highest value (1.6308), confirming its superiority over 

traditional estimators.  

Moderate Sample (N = 100, T = 20): As the sample size increased, all estimators showed 

improved performance; however, the advantage of the robust estimators became more 

apparent. HARSGMM again outperformed all other methods with the lowest MSE (0.1347), 

followed by RSGMM (MSE = 0.1435). OLS continued to underperform, recording a higher 

MSE (0.2280). Among the traditional estimators, FGLS and FD displayed moderate 

performance, but they are consistently less efficient than HARSGMM and RSGMM. The 

efficiency gains of HARSGMM and RSGMM relative to OLS increased, highlighting the effect 

of larger sample sizes on estimator stability.  

Large Sample (N = 500, T = 50): In the large sample scenario, all estimators demonstrated a 

marked improvement in bias, variance, and MSE. HARSGMM achieved the best overall 

performance with an MSE of 0.0809 and a relative efficiency of 1.6323. RSGMM followed 

with an MSE of 0.0897, maintaining its competitive edge. Traditional estimators such as OLS 

(MSE = 0.1914) and BTW (MSE = 0.1833) continued to lag in performance, especially under 

complex error structures. The consistency of HARSGMM and RSGMM across sample sizes 

confirms their robustness and reliability in managing joint assumption violations.  

Summary Insight: HARSGMM and RSGMM consistently delivered lower bias, variance, and 

MSE across all sample sizes under this scenario. These results affirm their superiority in 

handling multicollinearity, heteroscedasticity, and autocorrelation simultaneously. The 

findings reinforce the limitations of classical estimators, such as OLS in such contexts, and 

underscore the value of incorporating shrinkage and robust weighting schemes in modern panel 

data modeling.  
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Table 2: Performance Comparison of Estimators under Moderate Multicollinearity, 

Heteroscedasticity, and Autocorrelation Scenarios 

Estimator Bias Variance MSE Efficiency Sample Size 

Scenario C1: Moderate Multicollinearity, Heteroscedasticity, and Autocorrelation 

RSGMM 0.0056 0.1412 0.1463 1.4553 Small Sample (𝑁 = 50, 𝑇 = 10) 

PARGMM 0.0072 0.1578 0.1649 1.3187 Small Sample (𝑁 = 50, 𝑇 = 10) 

HARSGMM 0.0044 0.1335 0.1379 1.6308 Small Sample (𝑁 = 50, 𝑇 = 10) 

OLS 0.0125 0.2348 0.2416 1.0000 Small Sample (𝑁 = 50, 𝑇 = 10) 

FGLS 0.0109 0.2102 0.2157 1.1121 Small Sample (𝑁 = 50, 𝑇 = 10) 

FD 0.0093 0.1919 0.1978 1.2313 Small Sample (𝑁 = 50, 𝑇 = 10) 

BTW 0.0130 0.2256 0.2345 1.0376 Small Sample (𝑁 = 50, 𝑇 = 10) 

RSGMM 0.0061 0.1374 0.1435 1.4579 Moderate Sample (𝑁 = 100, 𝑇 = 20) 

PARGMM 0.0082 0.1539 0.1610 1.3191 Moderate Sample (𝑁 = 100, 𝑇 = 20) 

HARSGMM 0.0054 0.1297 0.1347 1.6314 Moderate Sample (𝑁 = 100, 𝑇 = 20) 

OLS 0.0112 0.2211 0.2280 1.0000 Moderate Sample (𝑁 = 100, 𝑇 = 20) 

FGLS 0.0096 0.1975 0.2027 1.1105 Moderate Sample (𝑁 = 100, 𝑇 = 20) 

FD 0.0081 0.1789 0.1840 1.2324 Moderate Sample (𝑁 = 100, 𝑇 = 20) 

BTW 0.0112 0.2083 0.2171 1.0362 Moderate Sample (𝑁 = 100, 𝑇 = 20) 

RSGMM 0.0038 0.0849 0.0897 1.4582 Large Sample (𝑁 = 500, 𝑇 = 50) 

PARGMM 0.0049 0.0911 0.0958 1.3193 Large Sample (𝑁 = 500, 𝑇 = 50) 

HARSGMM 0.0034 0.0773 0.0809 1.6323 Large Sample (𝑁 = 500, 𝑇 = 50) 

OLS 0.0060 0.1853 0.1914 1.0000 Large Sample (𝑁 = 500, 𝑇 = 50) 

FGLS 0.0054 0.1697 0.1752 1.1117 Large Sample (𝑁 = 500, 𝑇 = 50) 

FD 0.0051 0.1507 0.1557 1.2327 Large Sample (𝑁 = 500, 𝑇 = 50) 

BTW 0.0064 0.1775 0.1833 1.0363 Large Sample (𝑁 = 500, 𝑇 = 50) 

Source: Researcher’s analysis output from R. 

Performance under High Multicollinearity, Severe Heteroscedasticity, and Strong 

Autocorrelation 

Table 3 presents the results for Scenario C3, which involves the most challenging conditions: 

high multicollinearity, severe heteroscedasticity, and strong autocorrelation. The estimators 

evaluated include the proposed RSGMM, PARGMM, and HARSGMM, along with benchmark 

estimators OLS, FGLS, First-Differenced (FD), and Between (BTW). Performance metrics—

bias, variance, mean squared error (MSE), and relative efficiency—are compared across three 

sample sizes: small, moderate, and large.  

Table 3: Performance Comparison of Estimators under High Multicollinearity, Severe 

Heteroscedasticity, and Strong Autocorrelation 

Estimator Bias Variance MSE Efficiency Sample Size 

Scenario C2: High Multicollinearity, Severe Heteroscedasticity, and Strong Autocorrelation 

RSGMM 0.0104 0.1973 0.2069 1.3652 Small Sample (𝑁 = 50, 𝑇 = 10) 

PARGMM 0.0122 0.2153 0.2280 1.2525 Small Sample (𝑁 = 50, 𝑇 = 10) 

HARSGMM 0.0092 0.1875 0.1973 1.4898 Small Sample (𝑁 = 50, 𝑇 = 10) 

OLS 0.0156 0.2879 0.2992 1.0000 Small Sample (𝑁 = 50, 𝑇 = 10) 
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FGLS 0.0138 0.2643 0.2731 1.0867 Small Sample (𝑁 = 50, 𝑇 = 10) 

FD 0.0123 0.2436 0.2521 1.1885 Small Sample (𝑁 = 50, 𝑇 = 10) 

BTW 0.0161 0.2748 0.2856 1.0214 Small Sample (𝑁 = 50, 𝑇 = 10) 

RSGMM 0.0111 0.1882 0.1974 1.3645 Moderate Sample (𝑁 = 100, 𝑇 = 20) 

PARGMM 0.0131 0.2044 0.2176 1.2528 Moderate Sample (𝑁 = 100, 𝑇 = 20) 

HARSGMM 0.0096 0.1778 0.1884 1.4902 Moderate Sample (𝑁 = 100, 𝑇 = 20) 

OLS 0.0149 0.2691 0.2814 1.0000 Moderate Sample (𝑁 = 100, 𝑇 = 20) 

FGLS 0.0132 0.2448 0.2562 1.0870 Moderate Sample (𝑁 = 100, 𝑇 = 20) 

FD 0.0121 0.2242 0.2342 1.1892 Moderate Sample (𝑁 = 100, 𝑇 = 20) 

BTW 0.0150 0.2533 0.2643 1.0215 Moderate Sample (𝑁 = 100, 𝑇 = 20) 

RSGMM 0.0074 0.0772 0.0854 1.3659 Large Sample (𝑁 = 500, 𝑇 = 50) 

PARGMM 0.0092 0.0834 0.0926 1.2531 Large Sample (𝑁 = 500, 𝑇 = 50) 

HARSGMM 0.0070 0.0703 0.0777 1.4903 Large Sample (𝑁 = 500, 𝑇 = 50) 

OLS 0.0096 0.1619 0.1721 1.0000 Large Sample (𝑁 = 500, 𝑇 = 50) 

FGLS 0.0087 0.1447 0.1540 1.0873 Large Sample (𝑁 = 500, 𝑇 = 50) 

FD 0.0079 0.1305 0.1400 1.1895 Large Sample (𝑁 = 500, 𝑇 = 50) 

BTW 0.0102 0.1532 0.1644 1.0217 Large Sample (𝑁 = 500, 𝑇 = 50) 

Source: Researcher’s analysis output from R.  

Small Sample (N = 50, T = 10): Under small sample conditions, the HARSGMM estimator 

achieved the lowest MSE (0.1973) and variance (0.1875), closely followed by RSGMM (MSE 

= 0.2069). In contrast, OLS performed the worst, with an MSE of 0.2992 and the highest bias 

(0.0156). Among the traditional estimators, FD (MSE = 0.2521) and FGLS (MSE = 0.2731) 

showed moderate performance but they are clearly outperformed by HARSGMM and 

RSGMM. This result suggests that shrinkage-based robust estimators provide substantial gains 

in estimation accuracy even in small samples under severe violations.  

Moderate Sample (N = 100, T = 20): As sample size increased, estimator performance 

improved across the board. HARSGMM continued to show the best performance with the 

lowest MSE (0.1884) and highest efficiency (1.4902), followed closely by RSGMM (MSE = 

0.1974). Traditional methods again fell short; OLS recorded a higher MSE of 0.2814. These 

findings reinforce the resilience of HARSGMM and RSGMM when heteroscedasticity and 

autocorrelation are pronounced.  

Large Sample (N = 500, T = 50): In the large sample context, HARSGMM remained the most 

efficient estimator with an MSE of 0.0777 and relative efficiency of 1.4903. RSGMM closely 

followed with an MSE of 0.0854. Compared to OLS, which has an MSE of 0.1721, both 

estimators demonstrated significant gains in precision and stability. FGLS and FD, while 

improving in larger samples, remained less efficient than the proposed robust alternatives.  

Summary Insight: Across all sample sizes, HARSGMM and RSGMM consistently 

outperformed traditional estimators in terms of bias, variance, and MSE. The presence of high 

multicollinearity, severe heteroscedasticity, and strong autocorrelation considerably affected 

the efficiency of classical estimators, such as OLS and FGLS. The superiority of HARSGMM 

and RSGMM in this complex setting validates their robustness and practical relevance for 

empirical researchers dealing with such assumption violations. 
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DISCUSSION AND CONCLUSION 

This study addressed a significant gap in econometric modeling by proposing and evaluating 

robust estimation techniques suited for panel data models plagued with assumption violations. 

Specifically, three novel estimators—Robust Shrinkage GMM (RSGMM), Panel Adaptive 

Ridge GMM (PARGMM), and Heteroscedasticity-Autocorrelation Robust Shrinkage GMM 

(HARSGMM)—were introduced. These estimators were evaluated under varying data 

conditions: baseline (Scenario C1), moderate (Scenario C2), and severe (Scenario C3), 

characterized by the presence or absence of multicollinearity, heteroscedasticity, and 

autocorrelation. Across all scenarios, the findings indicated that the proposed estimators, 

particularly HARSGMM and RSGMM, consistently outperformed traditional methods such as 

Ordinary Least Squares (OLS), Feasible Generalized Least Squares (FGLS), First Differencing 

(FD), and Between Estimators (BTW). HARSGMM yielded the lowest Mean Squared Error 

(MSE) and bias across small, moderate, and large samples, underscoring its resilience in 

handling complex violations. Even under the baseline scenario with low multicollinearity and 

no violation of other assumptions, the proposed estimators outperformed traditional ones, 

proving their efficiency is not limited to robust settings. The stability and efficiency of 

HARSGMM and RSGMM increased with sample size, with both estimators maintaining 

significantly lower MSE and bias than OLS and FGLS. For example, in Scenario C2 with large 

sample sizes, HARSGMM achieved over 1.49 times the efficiency of OLS, while RSGMM 

maintained superior performance across all metrics. These results suggest that traditional 

estimators become increasingly inefficient and unreliable as the level of assumption violations 

intensifies, whereas the proposed estimators retain robustness and accuracy.  

These results align with findings from earlier research that emphasize the limitations of 

traditional estimators and the superiority of robust estimators under assumption violations. As 

an example, Garba et al. (2013) and Gktas (2019) mentioned that conventional strategies, 

which includes OLS and FGLS, yield inefficient and unstable estimates in the presence of 

multicollinearity and autocorrelation. Compared to these methods, the estimators proposed in 

this study offer a greater complete and adaptable answer. Primarily based on these findings, 

this study recommends that educational packages incorporate the proposed estimators into 

superior econometric education. This can better equip analysts with robust equipment to 

address complicated data problems, inclusive of multicollinearity, heteroscedasticity, and 

autocorrelation, making them ready for realistic data challenges encountered in research and 

applied setting. Furthermore, given their robust performance, these robust estimators can 

function as default techniques in empirical studies. 

To facilitate wider adoption of the proposed estimators, future simulation studies should focus 

on implementing these estimators as functions or packages in statistical software programs, 

consisting of R or STATA. This will permit more efficient testing, replication, and evaluation 

throughout a variety of simulated statistics environments, enhancing methodological 

accessibility and development. In conclusion, this study advanced the sector of panel data 

econometrics by providing practical and theoretically sound alternatives to conventional 

estimators. HARSGMM and RSGMM provide effective equipment for accurate inference in 

the presence of assumption violations, with promising implications for research, teaching, and 

policy assessment.  
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