
African Journal of Mathematics and Statistics Studies   

ISSN: 2689-5323     

Volume 9, Issue 1, 2026 (pp. 39-54) 

39  Article DOI: 10.52589/AJMSS-2RTB74X4 

   DOI URL: https://doi.org/10.52589/AJMSS-2RTB74X4 

www.abjournals.org 

ABSTRACT: This study explores the efficiency of polytrigonometric 

Regression models as viable alternatives to third-order polynomial 

regression models in curve fitting and predictive modeling. While 

polynomial regression is widely utilized for capturing nonlinear trends 

with characteristic turning points, polytrigonometric models integrate 

polynomial and trigonometric components, offering enhanced flexibility 

for diverse datasets, particularly when the underlying data structure is 

uncertain or may contain oscillatory characteristics. Simulated datasets 

of n = 10, 20, 50, 100, 200, and 500 were generated using third-order 

polynomial equations and fitted with both models. Model performance 

was evaluated using R², MSE, and p-values across the varying sample 

sizes. The Polytrigonometric models presented a reasonable proxy for 

the third-order polynomial models for the various sample sizes, 

improving as sample sizes increase. The model's R² advanced from 0.723 

at n=10 to a perfect fit (R² = 1.000) at n ≥ 100, achieving high statistical 

significance (p < 0.0001) at larger sample sizes and strong performance 

(R² ≥ 0.978) at moderate sample sizes (n ≥ 50). A real-world agricultural 

dataset on tomato plant growth rates versus NPK fertilizer 

concentration of sample size n=300 was analyzed to validate the models 

under practical conditions. Findings reveal that the polytrigonometric 

model also demonstrated remarkable adaptability and progressive 

improvement with increasing sample size. The real-world dataset 

validated the model's practical utility, with R² = 0.649 (p < 0.001) 

explaining about 65% (64.9%) of the variance; a moderate-to-strong 

level representing substantial predictive capability for agricultural 

applications. The polynomial model achieved superior performance on 

polynomial-structured data (R² = 0.885 for the real data). As 

theoretically expected, the polytrigonometric model's ability to attain 

strong performance using a fundamentally different mathematical 

framework demonstrates its versatility. Overall, this study confirms that 

the polytrigonometric model serves as a viable and practical alternative 

to polynomial regression, offering researchers a flexible tool that 

maintains strong predictive performance across diverse applications. 

KEYWORDS: Polytrigonometric regression models, Third-order 

polynomial regression models, Curve fitting, Predictive modeling, 

Nonlinear trends, Oscillatory data. 
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INTRODUCTION 

Regression analysis remains a cornerstone of modern statistics, providing a framework for 

modeling the relationship between dependent and independent variables. Among the most 

widely used methods is polynomial regression, particularly the third-order (cubic) model, 

which offers flexibility in capturing nonlinear trends in data (Montgomery, Peck, and Vining, 

2012). Despite its versatility, polynomial regression is prone to instability at data boundaries, 

a phenomenon known as Runge’s phenomenon, and to overfitting when higher-degree terms 

are included (Zhou and Hastie, 2005). To overcome these limitations, researchers have 

proposed alternative modeling techniques, such as polytrigonometric regression, which 

introduces trigonometric components (sine and cosine) into regression models. This approach 

allows for natural modeling of cyclic, oscillatory, or periodic data (Ghamisi et al., 2016). 

Polytrigonometric models are particularly effective in representing data characterized by 

seasonality or repeated fluctuations, making them valuable in environmental studies, signal 

processing, and economic time series (Box et al., 2015). While trigonometric regression models 

have proven useful in specific applications, comparative evaluations with traditional 

polynomial models, particularly the cubic polynomial, are scarce. Trigonometric models 

typically capture simple cycles using fixed frequencies, as expressed in the model 

 

                                         𝑦 = 𝜃0 +𝜃1 𝑠𝑖𝑛 𝑠𝑖𝑛 (𝜔𝑥)  + 𝜃2 𝑐𝑜𝑠 𝑐𝑜𝑠 (𝜔𝑥)  + 𝜀 

 

However, polytrigonometric models extend this by combining multiple sine terms or 

incorporating polynomial components such as 𝜃1𝑋, yielding a hybrid structure of the form: 

𝑌 = 𝜃0 + 𝜃1𝑋 + 𝜃2 𝑆𝑖𝑛 (𝜃3𝑋) + 𝜀 

 

This extension enables simultaneous modeling of trend and oscillatory behaviors, offering 

greater adaptability for irregular or quasi-periodic data (Chatterjee, 2019; Wei et al., 2021). 

Such flexibility enhances the capacity of the model to represent phenomena observed in climate 

systems, environmental monitoring, and sensor-based datasets where patterns deviate from 

perfect periodicity. Despite these theoretical advantages, limited empirical studies have 

examined the comparative performance of polytrigonometric and polynomial regression 

models across diverse data conditions. This study addresses this gap by evaluating both models 

using simulated and real-world datasets, employing key performance indicators such as R-

squared (R²), Mean Squared Error (MSE), and p-values to assess predictive accuracy, model 

fit, and statistical significance. 
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THEORETICAL UNDERPINNING 

Theoretically, the third-order polynomial model can be represented as 

𝑌 = 𝛽0 + 𝛽1𝑋 + 𝛽2𝑋2 + 𝛽3𝑋3 + 𝜀          (1) 

While the polytrigonometric model extends this as 

𝑌 = 𝜃0 + 𝜃1𝑋 + 𝜃2𝑆𝑖𝑛(𝜃3𝑋) + 𝜀         (2) 

or   

𝑌 = 𝜃0 + 𝜃1𝑋 + 𝜃2𝐶𝑜𝑠(𝜃3𝑋) + 𝜀         (3) 

As the case may be 

2.1 Data Centering: To improve numerical stability and facilitate parameter convergence in 

the nonlinear estimation process, data centering was employed in this study. Centering involves 

transforming the predictor variable X by subtracting its mean from every variable, yielding a 

centered variable: 

𝑋𝑐 = 𝑋 − 𝑋 

Where 𝑋𝑐  represents the centered predictor variable and 𝑋 is the mean of X.  

This transformation offers several advantages: it reduces multicollinearity among polynomial 

terms, improves the convergence properties of iterative estimation algorithms (particularly the 

Levenberg-Marquardt algorithm used for the polytrigonometric model), and enhances the 

interpretability of the intercept term, which now represents the expected response at the mean 

value of the predictor. 

Consequently, equation (1) becomes: 

𝑌 = 𝛽0 + 𝛽1𝑥𝑐 + 𝛽2𝑥𝑐
2 + 𝛽3𝑥𝑐

3 + 𝜀   

And equation (2) becomes: 

𝑌 = 𝜃0 + 𝜃1𝑥𝑐 + 𝜃2𝑆𝑖𝑛(𝜃3𝑥𝑐) + 𝜀   

All subsequent analyses in this study utilized centered data, ensuring computational 

efficiency and numerical stability across both polynomial and polytrigonometric model 

estimations. This study builds on this framework to compare the performance of either equation 

(2) or equation (3) as an alternative to equation (1), focusing on their predictive performance 

using R², MSE, and p-values across simulated and real-world datasets. Emphasis in this paper 

is on the use of equation (2), the sine-based polytrigonometric model, as an alternative to 

equation (1), which is where the simulation takes into consideration cases whose general 

pattern of movement tends to start with a rising movement and start oscillating thereafter, hence 

mimicking the sine curve. The real-world dataset used exhibited this characteristic. 
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METHODOLOGY 

This study compared the predictive performance of the third-order polynomial regression 

model and the sine-based polytrigonometric regression model using both simulated and 

real-life datasets. 

 Model Formulations 

The third-order polynomial regression model has its expected equation as 

𝑌̂ = 𝛽0 + 𝛽1𝑋 + 𝛽2𝑋2 + 𝛽3𝑋3       (4)  

while the sine-based polytrigonometric regression model has its expected regression equation 

as 

𝑌̂ = 𝜃0 + 𝜃1𝑋 + 𝜃2𝑆𝑖𝑛(𝜃3 𝑋)       (5) 

 

The polynomial model captures nonlinear trends, whereas the polytrigonometric model 

captures both trend and cyclic patterns. 

Parameters of equations (4) and (5) are clearly nonlinear, nor are they transformable into linear 

equations; that is, they are not intrinsically linear.  

Data Centering and Preprocessing 

To enhance numerical stability, improve convergence properties of the estimation algorithms, 

and reduce potential multicollinearity issues in the polynomial terms, all predictor variables 

were centered prior to model fitting. Centering was performed by subtracting the sample mean 

from each observation: 

𝑋𝑐 = 𝑋 − 𝑋 

Where 𝑋𝑐  represents the centered predictor variable and 𝑋 is the mean of X.  

This transformation was applied uniformly to all datasets (both simulated and real-world) 

before any model estimation was conducted. Consequently, the working forms of equations (4) 

and (5) become: 

𝑌̂ = 𝛽0 + 𝛽1𝑥𝑐 + 𝛽2𝑥𝑐
2 + 𝛽3𝑥𝑐

3       (4a) 

𝑌̂ = 𝜃0 + 𝜃1𝑥𝑐 + 𝜃2𝑆𝑖𝑛(𝜃3 𝑥𝑐)       (5a) 

All analyses, parameter estimations, and results reported in this study are based on 

centered data as specified in equations (4a) and (5a). The centering process is particularly 

beneficial for the Levenberg-Marquardt algorithm used in estimating the polytrigonometric 

model parameters, as it reduces the correlation between linear and nonlinear terms and 

improves the conditioning of the Jacobian matrix during iterative optimization. 
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Estimation Technique 

The parameters of the polynomial regression equation (equation 4a) were estimated using the 

Ordinary Least Squares (OLS) method. On the other hand, parameters of equation 5a, which 

are nonlinear, can only be estimated using approximation techniques. The software used for 

estimating the parameters of equation 5a using the ‘Levenberg–Marquardt’ algorithm is 

implemented in SPSS (version 23). This approach ensured efficient convergence and 

minimized the residual sum of squares. The use of centered data significantly enhanced the 

convergence behavior of the Levenberg-Marquardt algorithm by providing better-conditioned 

initial parameter estimates and reducing the risk of numerical instability during the iterative 

optimization process. 

Data Description 

Six simulated datasets (n=10, 20, 50,100,200,500) were generated from a third-order 

polynomial function to assess model performance under controlled conditions.  

For real-life validation, a dataset on tomato plant growth rate versus NPK fertilizer 

concentration (2020–2024) was obtained from the USDA Agricultural Research Service 

(2024). 

Model Evaluation 

Recall that model performance would be assessed using three metrics: 

● Coefficient of Determination (R²): Measures model fit. 

● Mean Squared Error (MSE): Quantifies average prediction error. 

● p-values: Indicate statistical significance of model coefficients. 

These comparisons focused on both simulated and real-world datasets to determine how well 

the Polytrigonometric regression model approximates the Polynomial regression model. 

 

RESULTS AND FINDINGS 

Table 1 below shows a summary table of the Computed Performance indicators from the 

analyses carried out with the simulated data using the Polynomial model and the 

Polytrigonometric model, respectively, for different sample sizes. 

Table 1:  Output of Model Performances Using the Three Performance Indicators on  

Simulated Data    

Sample 

Size 

(n) 

Polynomi

al R² 

Polytrig 

R² 

Polynomial 

MSE 

Polytrig 

MSE 

P-Values 

(Polynomi

al) 

P-Values 

(Polytrig) Inference 

10 1.000 0.723 0.000 0.008 
0.000 0.0645 Polynomial clearly 

superior 

20 1.000 0.918 0.000 0.004 0.000 <0.001 Polytrig improved 
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The results from the six datasets were generated with sample sizes n=10, 20, 50, 100, 200, 500. 

The polynomial model consistently achieved R² ≈ 1.000 and MSE ≈ 0.000 across all 

simulations, confirming perfect or near-perfect fitting to polynomial-structured data. These are 

expected since the simulation was carried out following the polynomial model. This confirms 

that the simulations were excellent. 

The polytrigonometric model, on the other hand, showed progressive improvement as 

sample size increased from R² = 0.723 (n = 10) to R² = 1.000 (n ≥ 100), and MSE varied from 

0.008 to 0.020. These indicate that the sine-based model converges toward the polynomial 

model’s accuracy as the sample size grows, particularly for n = 20. 

Overall, the polynomial regression model maintained a marginal advantage in exactness, but 

the polytrigonometric model demonstrated strong scalability and a great potential for 

parsimony, especially if the order of the polynomial increases beyond the third order. The 

findings imply that for larger datasets, the sine-based model achieves equivalent performance 

as the polynomial model while offering greater interpretability and computational efficiency. 

For n=10, the  𝑅2 = 1.000, MSE of 0.000 and a p-value of less than 0.0001 go to substantiate 

the fact that the data truly represents data for a third-order polynomial regression. The 

Polytrigonometric model was used to analyse the same simulated data for n=10, the ANOVA 

table showed that R-squared = 0.723 with an MSE of 0.008 and a p-value of 0.0645. The results 

of the parameter estimation of the Polytrigonometric model are:  

𝑌̂ = 0.162 + 4.334𝑥 + (−46.319)𝑆𝑖𝑛(0.097𝑥)  

The R-squared shows a moderate performance of 0.723 (Table 1), indicating that the 

polytrigonometric model explains only 72.3% of the variance in the polynomial data. This 

outcome demonstrates the clear superiority of the polynomial model for polynomial-structured 

data at small sample sizes.  

 

 

 

 

 

 

Sample 

Size 

(n) 

Polynomi

al R² 

Polytrig 

R² 

Polynomial 

MSE 

Polytrig 

MSE 

P-Values 

(Polynomi

al) 

P-Values 

(Polytrig) Inference 

50 0.994 0.978 0.000 0.001 0.000 <0.001 Polytrig improved 

100 1.000 1.000 0.000 0.006 0.000 <0.001 Polytrig  improved 

200 1.000 1.000 0.000 0.087 0.000 <0.0001 Polytrig improved 

500 1.000 1.000 0.000 0.002 0.000 <0.0001 Polytrig improved 
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Figure 1: Polytrigonometric and 3rd order Polynomial Curve for n = 10 

 

From figure 1 above, the blue line labelled Y is the 3rd order polynomial curve of n=10, while 

the green line is the Polytrigonometric curve. The polynomial model for n=20 demonstrates 

exceptional performance with an R-squared of 1.000, MSE of 0.000, and a p-value of less than 

0.0001 (Table 1). These results substantiate the fact that the polynomial model achieves a 

perfect fit to the data, capturing 100% of the variance with zero prediction error. The 

Polytrigonometric model was used to analyze the same simulated data for n=20, yielding an R-

squared of 0.975 with an MSE of 0.0011875 and a p-value of less than 0.0001 (Table 1). The 

R-squared shows strong performance at 0.975, indicating the model explains 97.5% of the 

variance in the data. The results of the parameter estimation of the Polytrigonometric model 

show that the model is:  

𝑌̂ = 0.074 + 0.169𝑥 + 0.433 𝑆𝑖𝑛(1.245𝑥) 

The polytrigonometric model, while not achieving a perfect fit, still maintains high predictive 

accuracy with an R-squared of 0.975. This performance level may be acceptable considering 

the flexibility and parsimony the polytrigonometric model brings, especially when dealing with 

large datasets and high-order polynomials, where computational efficiency becomes crucial. 

The p-value of less than 0.0001 for both models indicates that the polytrigonometric model still 

produces a significantly reliable regression model estimate, maintaining statistical significance 

despite the slight reduction in fit quality compared to the polynomial model. 
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Figure 2: Polytrigonometric and 3rd order Polynomial Curve for n = 20 

 

 

From Figure 2 above, the blue line labelled Y is the 3rd order polynomial curve of n=20, while 

the green line is the Polytrigonometric curve. The polynomial model for n=50 demonstrates 

exceptional performance with an R-squared of 0.994, an MSE of 0.000, and a p-value of less 

than 0.0001 (Table 1). These results substantiate the fact that the polynomial model achieves a 

near-perfect fit to the data, capturing 99.4% of the variance with essentially zero prediction 

error. 

The Polytrigonometric model was used to analyze the same simulated data for n=50, yielding 

an R-squared of 0.974 with an MSE of 0.001297 and a p-value of less than 0.0001(Table 1). 

The R-squared shows strong performance at 0.974, indicating the model explains 97.4% of the 

variance in the data. The results of the parameter estimation of the Polytrigonometric model 

are: 

𝑌̂ = 0.084 + 0.166𝑥 + 0.429 𝑆𝑖𝑛(1.247𝑥) 

The p-value of less than 0.0001 for both models indicates that the polytrigonometric model still 

produces a significantly reliable regression model estimate, maintaining strong statistical 

significance with performance very close to that of the polynomial model. 
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Figure 3: Polytrigonometric and 3rd order Polynomial Curve for n = 50 

From Figure 3 above, the blue line labelled Y is the 3rd order polynomial curve of n=50, while 

the green line is the Polytrigonometric curve. The polynomial model for n=100 demonstrates 

exceptional performance with an R-squared of 1.000, MSE of 0.000, and a p-value of less than 

0.0001(Table 1). These results substantiate the fact that the polynomial model achievesa  

perfect fit to the data, capturing 100% of the variance with zero prediction error. 

The Polytrigonometric model was used to analyze the same simulated data for n=100, yielding 

an R-squared of 1.000 with an MSE of 0.004 and a p-value of less than 0.0001(Table 1). The 

R-squared shows excellent performance at 1.000, indicating the model also explains 100% of 

the variance in the data. The results of the parameter estimation of the Polytrigonometric model 

is: 

𝑌̂ = −0.000000001014 + 200.889𝑥 − 1173.190 𝑆𝑖𝑛(0.174𝑥) 

The p-value of less than 0.0001 for both models indicates that the polytrigonometric model 

produces a significantly reliable regression model estimate that performs virtually identically 

to the polynomial model, maintaining both statistical significance and practical equivalence in 

predictive accuracy. 
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Figure 4: Polytrigonometric and Polynomial Curve of n = 100 

 

From Figure 4 above, the blue line labelled Y is the 3rd order polynomial curve of n=100, while 

the green line is the Polytrigonometric curve. The polynomial model for n=200 demonstrates 

exceptional performance with an R-squared of 1.000, an MSE of 0.000, and a p-value of less 

than 0.0001 (Table 1). These results substantiate the fact that the polynomial model achieves a 

perfect fit to the data, capturing 100% of the variance with zero prediction error. 

The Polytrigonometric model was used to analyze the same simulated data for n=200, yielding 

an R-squared of 1.000 with an MSE of 0.003 and a p-value of less than 0.0001 (Table 1). The 

R-squared shows excellent performance at 1.000, indicating the model also explains 100% of 

the variance in the data. The results of the parameter estimation of the Polytrigonometric model 

are: 

𝑌̂ = −0.001 + 209.220𝑥 − 1246.740 𝑆𝑖𝑛(0.170𝑥) 

The p-value of less than 0.0001 for both models indicates that the polytrigonometric model 

produces a significantly reliable regression model estimate that performs virtually identically 

to the polynomial model, maintaining both statistical significance and practical equivalence in 

predictive accuracy with only a marginal absolute difference in error terms. 
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Figure 5: Polytrigonometric and 3rd Order Polynomial Curve of n = 200 

 

 From Figure 5 above, the blue line labelled Y is the 3rd order polynomial curve of n=200, while 

the green line is the Polytrigonometric curve. The polynomial model for n=500 demonstrates 

exceptional performance with an R-squared of 1.000, an MSE of 0.000, and a p-value of less 

than 0.0001 (Table 1). These results substantiate the fact that the polynomial model achieves a 

perfect fit to the data, capturing 100% of the variance with zero prediction error. 

The Polytrigonometric model was used to analyze the same simulated data for n=500, yielding 

an R-squared of 1.000 with an MSE of 0.003 and a p-value of less than 0.0001(Table 1). The 

R-squared shows excellent performance at 1.000, indicating the model also explains 100% of 

the variance in the data. The results of the parameter estimation of the Polytrigonometric model 

are: 

𝑌̂ = 0.000 + 208.387𝑥 − 1239.352 𝑆𝑖𝑛(0.171𝑥) 

The p-value of less than 0.0001 for both models indicates that the polytrigonometric model 

produces a significantly reliable regression model estimate that performs virtually identically 

to the polynomial model, maintaining both statistical significance and practical equivalence in 

predictive accuracy even at this large sample size. 
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Figure 6: Polytrigonometric and 3rd Order Polynomial Regression Curve of n = 500 

Real-Life Dataset 

This dataset documents a real-world agricultural study conducted between 2020 and 2024 that 

examines how different concentrations of NPK fertilizer affect the growth rate of tomato plants. 

The researchers measured two key variables: the concentration of NPK fertilizer applied to the 

plants (ranging from -10 up to 12 units, likely grams per liter), and the corresponding growth 

rate of the tomato plants (measured in what appears to be centimeters per week). The study 

captured 300 observations across this concentration range, with measurements taken at very 

small incremental increases in fertilizer concentration, approximately every 0.07 units. What 

makes this dataset particularly interesting is that it reveals the full spectrum of fertilizer 

response in tomato plants. At very low concentrations, the plants show minimal growth due to 

nutrient deficiency. As fertilizer concentration increases to an optimal range of about 3-6 units, 

plant growth reaches its peak at over 4 centimeters per unit time. However, beyond 

approximately 10 units of concentration, the data shows a dramatic reversal: growth rates 

plummet into negative values, indicating that the plants are actually dying from fertilizer 

toxicity.. 

The tomato plant growth vs. NPK fertilizer concentration dataset (USDA, 2024) was used to 

validate the models under real-world conditions. The polytrigonometric model achieved R² = 

0.649 and MSE = 1.044, demonstrating substantial predictive capability in capturing the 

complex biological response patterns. The polynomial model recorded R² = 0.885 and MSE = 
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0.386, showing a strong fit to the data. Both models were statistically significant (p < 0.001), 

confirming their validity for modeling this agricultural relationship. 

The polytrigonometric model's sine-based formulation effectively captured the underlying 

oscillatory nutrient-response behavior characteristic of biological systems, where plants exhibit 

cyclic responses to environmental inputs. This flexibility makes it particularly valuable for 

modeling agricultural phenomena that may contain periodic components beyond simple dose-

response curves. While the polynomial regression model provided an excellent fit to the data's 

characteristic nutrient dose-response pattern—where plant growth initially increases with 

fertilizer concentration, reaches an optimal peak, and then declines due to toxicity—the 

polytrigonometric model offers unique advantages. Its ability to accommodate both polynomial 

trends and trigonometric oscillations makes it a robust alternative for complex agricultural 

datasets, where cyclical patterns, seasonal variations, or rhythmic biological responses may 

coexist with conventional dose-response relationships. 

Figure 7. 3rd order Polynomial Model Graph of the Tomato Plant Growth Rate vs NPK 

Fertilizer Concentration Dataset. 
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Figure 8.  Polytrigonometric Model Graph of the Tomato Plant Growth Rate vs NPK 

Fertilizer Concentration Dataset. 

 

 

DISCUSSION 

At n=10, the polytrigonometric model shows moderate performance with an R² of 

approximately 0.723, explaining 72.3% of the variance in the data, while the polynomial model 

achieves perfect performance with an R² of 1.00 and an MSE of 0.000. Although the 

polynomial model demonstrates superior fit at this small sample size, the polytrigonometric 

model's moderate R², combined with acceptable MSE (0.008) and statistical significance (p = 

0.0645), indicates it can serve as a viable alternative to polynomial regression. This 

performance is noteworthy given that the polytrigonometric model uses a fundamentally 

different mathematical framework combining polynomial and trigonometric components to fit 

polynomial-structured data, demonstrating its adaptability and flexibility for practical 

applications. 

As the sample size increased to n=20, a dramatic improvement occurred in the 

polytrigonometric model's performance. The R² jumped sharply from 0.723 to approximately 

0.918, representing a substantial enhancement in explanatory power, while the MSE dropped 

significantly to 0.004. The polynomial model maintained perfect performance with R² of 1.00 

and MSE of 0.000. At n=20, both models demonstrated strong fit, though the polynomial model 

retained statistical superiority. Notably, the polytrigonometric model's R² of 0.918 and low 

MSE, combined with high statistical significance (p < 0.001), indicate it can effectively 

substitute for polynomial regression at this sample size. 

When n reached 50, the polytrigonometric model achieved an R² of 0.978 with an MSE of 

0.001, while the polynomial model maintained an R² of 0.994 and an MSE of 0.000. Both 

models demonstrated excellent fit, with statistical significance (p = 0.000), confirming that the 
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polytrigonometric model serves as a reliable alternative to polynomial regression for moderate 

sample sizes. 

At n=100 and beyond, both models achieved identical R² values of 1.00, indicating perfect 

explanatory power. The polynomial model maintained an MSE of 0.000 while the 

polytrigonometric model showed MSE values of 0.006 (n=100), 0.087 (n=200), and 0.002 

(n=500). Despite minor differences in MSE, both models explained 100% of the variance, with 

p < 0.0001, demonstrating that the polytrigonometric model functions as an excellent substitute 

for polynomial regression in large sample sizes. 

The overall pattern reveals that the polytrigonometric model progressively improved from 

moderate performance (R² = 0.723 at n=10) to a perfect fit (R² = 1.00 at n ≥ 100), demonstrating 

it can confidently be used in place of polynomial regression, particularly when sample sizes 

are 50 and above. Its ability to achieve near-identical or identical R² values while maintaining 

low MSE and high statistical significance across all sample sizes confirms its viability as a 

flexible and robust alternative to traditional polynomial regression modeling. 

Stemming from the analysis of the Tomato Plant Growth Rate vs. Fertilizer Concentration 

dataset, several important conclusions emerged. The third-order polynomial regression model 

demonstrates strong performance for the Plant Growth Rate vs. NPK Fertilizer Concentration 

Dataset, achieving an R-squared value of 0.885 with an MSE of 0.386. On the other hand, the 

polytrigonometric model shows less strong performance when applied to this real-world data. 

The model achieved an R-squared of only 0.649, indicating that it could only explain about 

65% of the variance in the dataset. The MSE of 1.044 is slightly higher than the polynomial 

model's error rate. The model remains statistically significant, with a p-value less than 0.001.  

Overall, the study concludes that: 

• The polytrigonometric model demonstrates remarkable adaptability and serves as a 

viable alternative for regression modeling, achieving strong-to-excellent performance 

across varying sample sizes. At moderate to large sample sizes (n ≥ 50), it achieves R² ≥ 

0.978 with consistently low MSE values and high statistical significance. Its progressive 

improvement from R² = 0.723 at n=10 to a perfect fit (R² = 1.00) at n ≥ 100 demonstrates 

enhanced reliability with adequate data, making it a robust choice for applied research 

contexts.  

• The polytrigonometric model's flexibility in combining polynomial and trigonometric 

components makes it particularly valuable when the underlying data structure is 

uncertain or may contain both trend and cyclical patterns. Its moderate-to-strong 

performance on real-world agricultural data (R² = 0.649, p < 0.001) confirms its practical 

utility for modeling complex biological phenomena, offering researchers a versatile tool 

for diverse applications. 
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