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ABSTRACT: This work is devoted to the study of fractional 

differential equations involving Caputo non-homogeneous 

fractional differential equations. Using Fourier transform method, 

a complex variable explicit solution to non-homogeneous second-

order fractional differential equation was obtained.  
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INTRODUCTION 

Fractional calculus is a branch of mathematics investigating the properties of derivatives and 

integrals of non-integer orders called fractional derivatives and integrals. The history of 

fractional calculus was first mentioned in Leibniz’s letter to L’Hospital in the year 1695, which 

related to his generalisation of meaning of the notation 
( )n

n
d d

dx for the derivative of order 

1,  0,1,2,...,  when ?
2

n N N n = =
, means he was interested to the derivative of order 

1
2 , 

where the idea of semi-derivative was suggested. During that time, fractional calculus was built 

on formal foundations by many famous Mathematicians, like Liouville, Grunwald, Riemann, 

Euler, Lagrange, Heaviside, Fourier, etc. many of them proposed original approaches, which 

can be found chronologically [1]. Many works have been done on fractional calculus in the 

derivation of particular solutions of a significantly large number of linear and non-linear 

ordinary and partial differential equations. The fractional integral may be used for describing 

the cumulation of some quantity, when the order of integration is unknown, it can be 

determined as a parameter of a regression model as presented [2]. One of the major reasons for 

fractional calculus is that it can be considered as a super set of integer-order calculus of the 

second and higher order. Other applications occur in the following fields: fluid flow, 

viscoelasticity, diffusive transport akin to diffusion, probability, statistics and electrical 

networks dynamical processes in self-similar and porous structures, electrochemistry of 

corrosion, optics and signal processing as well as control theory of dynamical systems, among 

others [3]. Many physical systems appear to exhibit fractional order behaviour that may vary 

with time or space. The fractional calculus has generated the operations of differentiation and 

integration to any fractional order. The order may take on any real or imaginary value. Some 

applications of fractional calculus amount to replacing the time derivative in a given evolution 

equation by a derivative of fractional order. Interesting attempts have been made recently to 

give the physical meaning to the initial conditions for fractional differential equations with 

Riemann-Liouville fractional derivatives proposed. Thus, fractional calculus has the potential 

to accomplish what integer-order calculus cannot. It has been believed that many of the great 

future developments will come from the applications of fractional calculus to differential fields. 

Some recent benefits to the theory of fractional differential equations can be seen in [3-6]. 

The first attempt was probably to introduce a fractional Fourier transform started by Wiener in 

the paper [7] published as early as 1929. The main contribution of [7] was in a discussion of a 

relation between an expansion of a function in a series of orthogonal Hermite polynomials and 

its Fourier transformation whereas the introduced fractional Fourier transform was just a 

byproduct of the used method. From the mathematical point of view, the fractional Fourier 

transform in [3, 6, 7] and in many other publications was based on the fractional powers of the 

Fourire transform defined through the set of its eigenfunctions given by the Gauss-Hermite 

functions. Moreover, the fractional Fourier transform of this type permits also the following 

interpretation for its applications in applied mathematics and physics, and especially in filter 

design, signal analysis and pattern recognition. For the theory of the Fourier transform on the 

space of tempered distributions and on the space ( ) ,  1 2pL p 
 we refer the reader to [8] 

and [9] respectively. 

Our aim is thus to apply the Fourier transform method to construct nonhomogeneous fractional 

differential equations. We consider the fractional Caputo-type derivative of this form 
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( )( ) ( ) ( )0

cD q t q t h t + + =
       (1.1) 

Where, ( )h t
 is a n times−  continuously differentiable function and 0

cD q

+  is the fractional 

Caputo-type derivative of order ( )1, ,  n n n N + − 
  

Preliminaries 

We introduce some basic definitions,  notations of fractional integral calculus. 

Definition 2.1. (The Riemann-Liouville fractional integral of order 0   ). This fractional 

integral of order 0   for a function 
( )  ( )1 0, , ; 0nu t C b b 

is given by 

( )
( )

( ) ( )
1

0
0

1
,   0

t
RLD u t t u d

    


−
= −   
 

    (2.1.1) 

Where, ( ).
denote the Euler’s Gamma function. The left and right Riemann-Liouville 

derivative with order 0   of a given function 
( )  ( )1 0, , nu t C b

are respectively given as 

( ) ( )
( )

( ) ( )
1

0, ,

1n n
t nRL n

t a tn n a

d d
D u t D u t t u d

ndt dt

    


− −− = = −   − 
    (2.1.2) 

and  

( ) ( ) ( )
( )

( )
( ) ( )

1

, ,

1
1

n
n n

bn nRL n

t b t bn n t

d d
D u t D u t t u d

ndt dt

    


− −−
−

 = − = −   − 
 (2.1.3) 

Where n is an integer which satisfies 1n n−    

 

Definition 2.2. (The Caputo derivative of fractional order 0  ). The Caputo derivative of 

fractional order 0   is defined as 

( )
( )

( )
( )

1n
t

c

a
a

t s
D h t h s ds

n







− −

+

−
=

 −
, 1n n−   ,   1n a= +

   (2.2.1) 

where  a
 denote the integer part of the real number  . 

Definition 2.3. (Caputo differential operator 
c aD  ). Caputo differential operator 

c aD   is given 

by 
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( )   ( )1

c a RL a

a
D z t D z T z t

−
 = −
 

      (2.3.1) 

Where, 

( )
 

   ( )
( )

 
( )

1

0

1 t
RL a d

D z t t s z s ds
dt


 

  

− −
= −

 −


is the Riemann-Liouville differential  

operator and 
( )

( )( ) ( )

0 !

k
n

k

n

k

z o
T z t t

k=

=
is the nth  degree Taylor polynomial for z , centred at the 

origin. Here, 
c aD is tacitly assumed to be a left-sided differential operator and to have its 

standing point at 0t = , so that one naturally seek solution to the differential equation on an 

interval of the form  0,T
 with some 0T   

Definition 2.4. (see [14]). The one dimensional fractional Fourier transform with rotational 

angle of function  ( ) ( )1q t L
is given by 

( ) ( ) ( ) ( ) ( )ˆ , , q t q K t q t dt      = =         (2.4.1) 

Where, the kernel 

( )
( )( )

( )

2 2exp cot ) / 2 cos ,    

, 1
exp ,                                              

22

C i q iq ec if n

K t
iq if





     

 
 



 + − 


= 
− =

  (2.4.2) 

1 cot

2

i
C





−
=

        (2.4.3) 

The inversion formula of (2.4.1) is given by 

( ) ( ) ( )
1 ˆ ˆ, ,   t

2
q t K t q d   


= 

     (2.4.4) 

Where, the kernel 

( )
( )( )

( )

2 2exp cot ) / 2 cos ,    

ˆ , 1
exp ,                                                  

22

C i q iq ec if n

K t
iq if





     

 
 



  − + + 


= 
=

  (2.4.5) 

( )2 1 cotC i   = +
       (2.4.6) 

 



 

Advanced Journal of Science, Technology and Engineering  

Volume 4, Issue 1, 2024 (pp. 52-66)  

56  Article DOI: 10.52589/AJSTE-3EVF5SPX 

  DOI URL: https://doi.org/10.52589/AJSTE-3EVF5SPX 

www.abjournals.org 

Definition 2.5. ( Error Function). The Error can be defined as 

( ) ( )2

0

2
exp ,   

x

Erf x t dt x


= − 
      (2.5.1) 

Definition 2.6. (The Mittag-Leffler function). We defined the Mittag-Leffler function as 

( )
( )

( ), ,       ( , , ,  0)
kz

E z Z
k

    
 

=  
 +


   (2.6.1) 

Definition 2.7. (The Wright function). The Wright function is defined by 

( )
( )

1
, ; . ,      ( , , )

!

kz
z z

k k
    

 
= 

 +


    (2.7.1) 

Definition 2.7. (The Binomial Coefficients). The Binomial Coefficients are defined by  

( )

( )( )1 1!

! ! !

n

n n n

   

 

− − + 
= = 

−       (2.7.1) 

Where,  and n are integers. Observe that 0! 1= , then ( )

!
1,   1

0 ! !

  

   

   
= = =   

−    , also 

( )
( )

0 0

1
1

!

r r

r r

r r
z z z

rr

   
−

= =

+ − 
− = =  

 
 

 

Definition 2.8. ( The Gamma Function). The basic interpretation of the Gamma function is 

simply the generalisation of the factorial for all real numbers. It is defined by 

( ) ( ) 1

0
exp ,   xx t t dt x


− + = − 

      (2.8.1) 

Definition 2.9. (The Beta function). The Beta function can be defined in terms of Gamma 

function as 

( )
( ) ( )

( )
, ,    ,

x y
B x y x y x

x y

+
 

=  
 +

     (2.9.1) 

It can also be defined in term of a definite integral as 

( ) ( )
1 11

0
, 1 ,    ,

yxB x y t t dt x y x
−− += −  

     (2.9.2) 

Definition 2.10. (The Fourier transform   and its inverse transform 
1− ). The Fourier 

transform   and it inverse transform 
1− of ( ) ( ),  ,f t t  −  is defined by 
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 ( ) ( ) ( ) ( )ˆ exp             f w f w i t f t dt 
+

−
 = = 

   (2.10.1) 

and 

 ( ) ( ) ( ) ( )1 1 ˆexp            t
2

f t f t i t f d  


+
−

−
 = = − 

  (2.10.2) 

 

Definition 2.11. (Convolution Theorem). The theorem states that the Laplace transform of the 

convolution of two functions is the product of their Laplace transforms. If ( )F s
and ( )G s

are 

the Laplace transforms of ( )f t
and ( )g t

respectively, then  

( ) ( ) ( ) ( ) 0

t

f g L f t z g z dz F s G s = − =
     (2.11.1) 

Definition 2.12. (The fractional integral). The fractional integral of ( )y t
of order  is defined 

as 

( )
( )

( ) ( )
1

0

1
,     0

t

D y t t z y z dz
 



−− = − 
 

    (2.12.1) 

Equation (2.12.1) is actually a convolution integral. So using (2.12.1), we find that 

( ) 
( )

  ( )  ( )11
.   0L D y t L t L y t S Y s   



− − −= = 


   (2.12.2) 

Equation (2.12.2) is the Laplace transform of the fractional integral. We see for 0,  1   −

that 

 
( )

 
( )1

1 1
 and tL D t L D e

S SS

   

 





− −

+ +

 +
= =

−     (2.12.3)  

Definition 2.13. (The fractional Fourier transform ( )f̂ 
). The fractional Fourier transform 

( )f̂ 
of order 0  is defined as  

 ( ) ( ) ( ) ( )ˆ ,       f f f t e xp t dt    
+

−
 = =      (2.13.1) 

Where, 
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( ) ( )( )
( )
( )

1

1

1

exp ,   0  

, exp

exp ,    0 

x
i x

e xp t isign

i x








 

  

 

 − 


= = 
 
   (2.13.2) 

 

MAIN RESULT 

Proposition 3.4. Let v  be a real nonnegative number and let f be piecewise continuous on 

( )0,j = 
and integrable on any finite subinterval of  0,j = 

. Then for , 0t v  , we defined 

the Riemann-Liouville fractional integral of order v  as 

( )
( )

( ) ( )
11 x vv

c x
c

D f x x t f t dt
v

−− = −
 

     (3.4.1) 

Proof 

Consider the 
thn  order differential equation with the given initial conditions: 

( ) ( )

( ) ( ) ( ) ( )1
0,  0,..., 0

n

n

y x f x

y c y c y c
−

=

= = =
      (3.4.2) 

Using the form of the Cauchy function, 

( )
( )

( )

1

,
1 !

n
x t

H x t
n

−
−

=
−

        (3.4.3) 

We claim that the unique solution of (3.4.2) is given by 

( )
( )

( )
( )

1

1 !

n
x

c

x t
y x f t dt

n

−
−

=
−

       (3.4.4) 

  By induction 

For 1n = , we have 

( ) ( ) ( ),  0y x f x y c = =
       (3.4.5) 

Solving (3.4.5) we obtained  

( )
( )

( )
( )

1 1

1 1 !

x x

c c

x t
y t dt f t dt

−
−

 =
− 
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Since ( ) 0y c =
, we have  

( ) ( )
x

c
y x f t dt=          (3.4.6) 

Now, assume that  (3.4.4) is true for n , we show that the equation is also true for 1n + . 

Consider 

( ) ( ) ( )

( ) ( ) ( )

1

0,  0,..., 0

n

n

y x f x

y c y c y c

+
=

= = =
      (3.4.7) 

Since 
( ) ( ) ( )

( )
( )1 nn

y x y x
+ =

. Let ( ) ( )u x y x=
. Then (3.4.7) becomes  

( ) ( )

( ) ( ) ( ) ( )1
0,  0,..., 0

n

n

u x f x

u c u c u c
−

=

= = =
      (3.4.8) 

Using the induction hypothesis, we noticed that 

( )
( )

( )
( )

1

1 !

n
x x z

c z c t c

z t
y t dt f t dt dz

n

−

= =

 −
  =

 −
 

  
 

( ) ( )
( )

( )
( )

( )
( )

1

1 ! !

n n
x x x

t c z t c

z t x t
y x y c f t dt dz f t dt

n n

−

= =

 − −
 − = =
 −
 

  
    

          (3.4.9) 

Since ( ) 0y c =
, then  

( )
( )

( )
!

n
x

c

x t
y x f t dt

n

−
= 

       (3.4.10) 

So, (3.4.4) is true 

Thus, since ( )f x
 in (3.4.2) is the 

thn derivative of ( )y x
, we may interpret ( )y x

as the 
thn

integral of ( )f x
. Therefore, 

( )
( )

( ) ( )
11

1 !

x nn

c x
c

D f x x t f t dt
n

−− = −
− 

     (3.4.11) 

Lamma 3.5. The one and two parameter representation of Mittag-Leffler function can be 

defined in terms of a power series as 
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( )
( )0

,   0
1

k

k

x
E x

k
 





=

= 
 +


      (3.5.1) 

( )
( )

,

0

,   0, 0
k

k

x
E x

k
   

 



=

=  
 +


     (3.5.2) 

The exponential series defined by (3.5.2) is a generalisation of (3.5.1). The following 

relationship holds from the result of the definition of (3.5.2) 

 and

( )
( )

( ), ,

1
E x xE x    


+= +


      (3.5.3) 

( ) ( ) ( ), , 1 , 1

d
E x E x x E x

dx
      + += +

     (3.5.4) 

( ) ( ) ( ) ( ), 1 , 1 , 1

1
1

d
E x E x E x

dx x
     


+ − +

  = − − 
     

          (3.5.5) 

So that 

( ) ( ) ( ) ( ), , 1 ,

1
1

d
E x E x E x

dx x
     


−

 = − − 
    (3.5.6) 

Proof of (3.5.3) 

By definition (3.5.2), we have that 

( )
( ) ( )( ) ( )( )

( ) ( )( ) ( )
( )

1

,

0 1 1

,

0

1

1 1

k k k

k k k

k

k

x x xx
E x

k k k

x
x xE x

k

 

  

      

   

+  

= = =



+

=

= = =
 +  + +  + +

= + = +
  + +

  


   

         (3.5.7) 

Observe that ( ), 0 1E  =
. Also  for specific values of  and   the Mittag-Leffler function 

reduces to some familiar functions such as 

( )
( )

( )1,1

0 0

exp
1 !

k k

k k

x x
E x x

k k

 

= =

= = =
 +

 
     (3.5.8) 

( )
( )

( ) ( )1
2

2

,1

0 2 1

exp
k

k
k

x
E x x Erfc x



= +

= = −



     (3.5.9) 
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( )
( ) ( )

( )1

1,2

0 0

exp 1

2 1 !

k k

k k
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Proposition 3.6. The Gamma function has some unique properties. By the use of its recursion 

relations, one can obtain the formulas 
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       (3.6.1) 
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       (3.6.2) 

From (3.6.1), we observe that ( )1 1 =
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If we let 
2 2t y dt ydy=  = , so that 
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Equally, we can write (3.6.4) as 
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Multiplying both (3.6.4) and (3.6.5) together to get 
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Equation (3.6.6) is a double integral and can be in polar coordinates to get 
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So that ( )1
2  =

 

Proposition 3.7. let f be a continuous function and for any  0,  1n n  −   . Then for any 

positive integer k , we have 
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Proof 

recall that in the integer order operations, the Laplace transform of 
( )n

f is given by 

( )  ( ) ( ) ( )

( ) ( )

1 2 1

1
1

0

0 0 ... 0

0

n n n n n

n
n n k k

k

L f S F S f S f f

S F s S f

− − −

−
− −

=

= − − − −

= −
      (3.7.2) 

let 
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where,  
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Example 3.8. Consider the initial value problem of the form 
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Taking the Fourier transform of (3.8.1), gives 
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Where, 
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Noting that 
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Substituting,  into (3.8.1), gives 
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Integrating (3.8.6) from  to −  on the left hand side to get 
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On the right hand side, we have 

( ) ( )( )

( ) ( )

( )0 0 0

2 22 20

exp exp2
.

2 22 2

m

m m m m

i t df t i dy w y i y
dt

i i w w w i i w w w

     

    

  

− −

 −  + +
  +
 + + + + 

  
  

          (3.8.8) 

Recall the Residue Theorem (By Contour Integral) and using the fact that 
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Equation (3.8.8) becomes 

( )( )
( )0 0 0

2 2 2 2

exp 21 1
exp

2 2

m

r r
m m m m

s t y w y i y
ds s ds

i is w s w s w s w

  


 

−  + +
+

+ + + + 
  (3.8.9) 

Finding the poles of the denominator 

Let 
2 2 22 0 1 .m m m m m d ms w s w s w i w w iw w   + + = → = −  − = −   

Where, 
2 is damping coefficient and  0,1 

, dw +  

By Residue theorem, 
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is a solution due to the function  ( )f t
which makes the equation non-homogeneous and 
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is a solution to the ODE satisfied with the initial condition 

  

CONCLUSION 

Fractional Fourier transform is a generalisation of the ordinary Fourier transform. Unlike the 

other integer order calculus where operations are centred mainly at the integers, fractional 

calculus considers every real positive number. This work focuses on understanding the 

properties of fractional derivatives and their effectiveness in certain complex variables, while 

also constructing non-homogeneous fractional differential equations using the Fourier 

transform method.  
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