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ABSTRACT: A non-Bayesian approach to parameter estimation, 

statistical inference and decision-making are discussed and 

compared. A pragmatic criterion, success in practice, as well as 

logical consistency is emphasized in comparing alternative 

approaches. In this study, attention is given to skew distribution 

for modelling lifetime data in particular: the Marshall Olkin Alpha 

Power Inverse Exponential (MOAPIE) distribution. Parameters of 

the distribution were estimated using non-Bayesian estimation 

methods of Maximum Likelihood Estimation, Least Square 

Estimation and Weighted Least Square Estimation.  Finally, 

simulated and real life data applications illustrate the 

performance of the estimation methods. 

KEYWORDS: Non-Bayesian estimation, Maximum Likelihood 

estimation, Least Square estimation, Weighted Least Square 
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INTRODUCTION 

The non-Bayesian estimation somehow ignores what we know about the situation and just 

gives you a yes or no answer about trusting the null hypothesis, based on a fairly arbitrary 

cutoff. In Bayesian inference, a predictive distribution for future data is derived by integrating 

out unknown parameters; integrating over the posterior distribution of those parameters gives 

a posterior predictive distribution—a distribution for future data conditional on those already 

observed. Non-Bayesian methods for predictive inference take into account uncertainty in 

parameter estimates (Bjornstad, 1990). Non-Bayesian predictive inference is a relatively recent 

field. Under the heading of "non-Bayesian," we can subdivide the approaches into those that 

are "classical" frequentist and those that are "likelihood" based (Bjornstad, 1990). 

(i) Classical Frequentist Prediction 

The focus in frequentism is to achieve the nominal coverage under repeated sampling. 

Frequentist inference insists on a sharp distinction between unobserved, but nonrandom 

“parameters” and observable, random data. It works entirely with probability distributions of 

data, conditional on unknown parameters. It considers the random behavior of functions of the 

data, estimators, test statistics and makes assertions about the distributions of those functions 

of the data. 

(ii) Likelihood-based Inference 

Likelihood-based approaches, like many modern statistical concepts, can be traced back to 

Ronald Fisher. The basic idea of this school is that, except for special cases, our statistical 

inferences are on logically weaker grounds than when we are dealing with inferences from a 

normal distribution whose parameter estimates are orthogonal (Yudi, 1990). Therefore, we can 

see likelihood as akin to Bayesian probability, but without the integrability requirements or the 

possible confusion with frequentist probability.  

Bayesian inference treats everything as random before it is observed, and everything observed 

as “once observed” is treated as no longer random (Basheer et al., 2021). It aims at assisting in 

constructing probability statements about anything as yet unobserved (including “parameters”) 

conditional on the observed data. HajAhmad and Almetwally (2020) stated that Bayesian 

inference aids in making assertions like, “given the observed data.” Bayesian inference 

therefore feeds naturally into discussion of decisions that must be made under uncertainty, 

while frequentist analysis does not. 

In this study, attention is given to a non-normal distribution for modelling lifetime data in 

particular: the Marshall Olkin Alpha Power Inverse Exponential (MOAPIE) distribution 

formulated by Basheer (2019). Parameters of the distribution will be estimated using non-

Bayesian estimation methods of Maximum Likelihood Estimation, Least Square Estimation 

and Weighted Least Square Estimation and thereafter the comparison of the approaches. 
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THE MODEL 

In this section, we present the MOAPIE distribution about which some non-Bayesian 

estimation technique of estimation parameter will be carried upon. 

The cumulative distribution function (CDF) of the MOAPIR is 

 

𝐺𝑀𝑂𝐴𝑃𝐼𝑅(𝑥; 𝛼, ,) =

{
 
 

 
 𝛼𝑒

−𝑥−1
−1
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−1)
,           𝑥 > 0, 𝛼 ≠ 1,  > 0,  > 0             

𝑒−𝑥
−1
,                                                            𝛼 = 1

(1) 

Where ,  and  are shape, scale and location parameters respectively. (Basheer, 2019) 

The probability density function (PDF)  

𝑔𝑀𝑂𝐴𝑃𝐼𝑅(𝑥; 𝛼, ,) =  
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(Basheer, 2019).  

 

METHODS OF ESTIMATION 

For the considered distribution, we adopted three methods of estimation of non-Bayesian 

estimation (Maximum likelihood, Least square and Weighted least square) for estimating the 

parameters of MOAPIE distribution. 

Maximum Likelihood Estimation 

Let 𝑥1, … , 𝑥𝑛 be a random sample from MOAPIE  = (𝛼, , ) distribution; then the likelihood 

function is given by  

𝐿(𝑥|) =∏𝑔(𝑥𝑖) =
(𝛼 − 1)n(log(𝛼))n λnθn𝑒−∑ xi

−1n
i=1 𝛼∑ 𝑒−𝑥𝑖

−1n
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−2n
i=1

∏ [(𝛼 − 1)𝜃 + (1 − 𝜃) (𝛼𝑒
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n
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𝑛
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       (3) 

By taking logarithm of the likelihood function, we have 
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ℓ(𝑥|) = 𝑛𝑙𝑜𝑔((𝛼 − 1) log(𝛼) ) − ∑𝑥𝑖
−1 + log(𝛼)
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To obtain the MLEs of α,  and , we differentiate the expression in Eq. (4) with respect to α, 

 and . Thus, we have  
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On equating equations 5, 6 and 7 to zero, we obtained the MLE of α, λ, and θ. These equations 

cannot be solved analytically. Hence iterative methods such as Newton-Raphson can be used 

to accomplish the task of estimating the parameters (Almetwally et al, 2021). 
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Least Square Estimation 

Swain and Wilson (1988) introduced the Least Square Estimators (LSE). We use the least 

square procedure for estimating the parameters α, λ, and θ of the MOAPIE distribution. The 

least square estimation is obtained by minimizing 

𝑃(α, λ, θ) =∑(G(Xi,) −
i

n + 1
)
2

                                                                                  (8)

n

i=1

 

 

After differentiating the equation (8 ) with respect to parameters  and then equating to zero 
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The above stated non-linear equations cannot be solved analytically, so the ̂𝐿𝑆 𝑜𝑓   can use 

any iterative procedure techniques, such as conjugate-gradient algorithms, to obtain the 

numerical solution. 
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Weighted Least Square Estimation 

Weighted Least Square Estimation (WLSE) was also introduced by Swain and Wilson (1988). 

We adopted the WLS procedure to estimate parameters α, λ, and θ of the MOAPIE distribution. 

The WLSE estimation is obtained by minimizing 

𝑊(α, λ, θ) =∑Wi (G(Xi,) −
i

n + 1
)
2n

i=1

                                                                          (12) 
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                                                                                                           (13) 

After differentiating the equation (12)  with respect to  and then equating to zero 
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SIMULATION 

To compare between the Maximum Likelihood Estimation, Least Square Estimation and 

Weighted Least Square Estimation methods, the parameters of MOAPIE distribution are 

estimated using Monte Carlo Simulation, which is implemented by R language. The data were 

generated from the MOAPIE distribution for lifetime of arbitrary value of parameters α, λ, and 

θ α=1.5, λ=1.5, and θ=1.6. 

Table 1: Bias and Mean Square Error (MSE) of Parameters α=1.5, λ=1.5, and θ=1.6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The Bias and MSE are computed by generating 1000 replications samples size n=50, 100 and 

200 from the MOAPIE distribution. Table 1 reveals that for each method, the biases and the 

MSE’s decrease as sample size n increases. Also, the Weighted Lest Square estimation is the 

best estimation among the three considered Non-Bayesian estimations. 
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0.1526 

0.6731 

0.2521 

0.8745 

0.5320 

2.4287 

0.0432 

0.2310 

0.2008 

0.4035 

0.0353 

0.6534 

0.0241 

0.0745 
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0.3425 

0.0231 

0.3421 
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0.1134 

0.3248 

0.1154 
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0.0132 
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0.0834 

0.2390 

0.0354 

0.2315 

0.3310 

0.6476 

0.0438 

0.0645 

0.0345 

0.0947 

0.0437 

0.243 

0.0245 

0.0432 

0.0132 

0.0653 

0.0243 
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FITTING RELIABILITY DATA 

Numerical results of the parameter estimation of MOAPIE distribution are presented here with 

two real data. 

Data Set 1: The data set was obtained from Lawless (2011) which consists of the failure time 

for 17 appliances. The data are: 1167, 1925, 1990, 2223, 2400, 2471, 2551, 2568, 2694, 3034, 

3112, 3214, 3478, 3504, 4329, 6976, 7846. 

Parameters of MOAPIE distribution were estimated using MLE, LSE and WLSE.  

Kolmogorov-Smirnov (K-S) distance and p-values were also computed.  

Table 2: Estimated and Standard Error (Std) of Parameters for Different Methods of 

Estimation 

 

 

 

 

 

 

 

 

 

 

Data Set 2: The data set was obtained from Gacula and Kubala (1975). It consists of failure 

times of a certain product and contains 26 observations: 24, 24, 26, 32, 32, 33, 33, 33, 35, 41, 

42, 43, 47, 48, 48, 48, 50, 52, 54, 55, 57, 57, 57, 57, 61. 

The MLE, LSE and WLSE estimates of the parameters and the values of the K-S statistic with 

p-values are presented in Table 3. 

Table 3: Estimated and Standard Error (Std) of Parameters for Different Methods of 

Estimation 

Parameters  MLE LSE WLSE 

α Estimate 223.42 219.22 465.81 

Std 2.54 × 10−5 6.34 × 10−5 2.01 × 10−6 

 Estimate 542.67 561.34 1529.11 

Std 8.34 × 10−5 1.23 × 10−5 4.76 × 10−7 

 Estimate 525.01 531.89 1634.97 

Std 7.42 × 10−6 3.49 × 10−5 5.76 × 10−7 

K-S  0.1865 0.1852 0.1852 

P-value  0.2321 0.2302 0.2302 

Parameters  MLE LSE WLSE 

α Estimate 254.72 259.87 501.72 

Std 1.89 × 10−5 2.73 × 10−5 2.52 × 10−6 

 Estimate 643.87 684.78 1256.34 

Std 8.34 × 10−5 1.23 × 10−5 4.76 × 10−7 
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In selecting the best estimation method, the values of K-S, P-values, Standard error and Mean 

Square error were computed for the MOAPIE distribution. From Table 3, since WLSE has the 

minimum value of Bias, MSE and Std, Weighted Least Square is adjudged to be the best 

estimation method among the three methods of estimation considered. 

 

CONCLUSION 

In this paper, we considered three different approaches under non-Bayesian estimation method 

to estimate the unknown parameters of the Marshall Olkin Alpha Power Inverse Exponential 

distribution (MOAPIE) and provided some applications in the context of statistics. The results 

were explicated and revealed that Weighted Least Square provides a best fit and choice over 

the other two considered non-Bayesian estimations (Maximum Likelihood Estimation and 

Least Square Estimation). 
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