
Advanced Journal of Science, Technology and Engineering

ISSN: 2997-5972

Volume 4, Issue 3, 2024 (pp. 1-13)

1 Article DOI: 10.52589/AJSTE-JIHPGG70

 DOI URL: https://doi.org/10.52589/AJSTE-JIHPGG70

www.abjournals.org

ABSTRACT: One of the key research areas in operating systems

is memory allocation and process management by the operating

system. Memory allocation is the process of allocating blocks of

memory to different executing processes in order to improve

overall system performance. This paper analyses the efficiency of

memory allocation algorithms (first fit, best fit and worst fit) in the

multiple partition and contiguous memory allocation scheme. A

Mathematical model was used on process sizes in terms of

percentage internal fragmentation (IF%), percentage external

fragmentation (EF%), and percentage total utilization (TU%), this

was done to compare the performance of the memory allocation

algorithm. Results from the analysis show that the best fit made

more efficient use of the available memory space than that of first-

fit and worst fit.

KEYWORDS: Memory allocation, Operating system,

Mathematical model, Internal fragmentation, External

fragmentation, Memory utilization, Total Utilization.

USING A MATHEMATICAL MODEL TO EVALUATE THE EFFICIENCY OF

MEMORY ALLOCATION ALGORITHM

Ogba P. O.1 and Bello M.2

1Computer Science Department, Kogi State Polytechnic, Lokoja.

Email: ogbapaul@gmail.com

2Information Technology and Resource Center, Prince Abubakar Audu University, Anyigba.

Email: bmuriana685@gmail.com

Cite this article:

Ogba P. O., Bello M. (2024),
Using a Mathematical Model
to Evaluate the Efficiency of
Memory Allocation
Algorithm. Advanced Journal
of Science, Technology and

Engineering 4(3), 1-13. DOI:
10.52589/AJSTE-JIHPGG70

Manuscript History

Received: 23 May 2024

Accepted: 31 Jul 2024

Published: 13 Aug 2024

Copyright © 2024 The Author(s).

This is an Open Access article

distributed under the terms of

Creative Commons Attribution-

NonCommercial-NoDerivatives

4.0 International (CC BY-NC-ND

4.0), which permits anyone to

share, use, reproduce and

redistribute in any medium,

provided the original author and

source are credited.

mailto:ogbapaul@gmail.com
mailto:bmuriana685@gmail.com

Advanced Journal of Science, Technology and Engineering

ISSN: 2997-5972

Volume 4, Issue 3, 2024 (pp. 1-13)

2 Article DOI: 10.52589/AJSTE-JIHPGG70

 DOI URL: https://doi.org/10.52589/AJSTE-JIHPGG70

www.abjournals.org

INTRODUCTION

The act of controlling computer memory at the system level is known as memory management

and it is the function responsible for assigning and managing the primary memory of the

computer (Abraham, Peter, and Greg, 2010). Memory management must be able to

dynamically assign sections of memory to applications as they request it, and then free it for

reuse when it is no longer required. This is crucial in any complex computer system where

multiple processes may be running at the same time. Memory management is the function in

operating systems that manages the computer's primary memory. The function keeps track of

each memory location's status, whether it's allocated or unallocated. It decides how memory is

distributed across multiple processes, determining who gets memory, when they get it, and how

much they get. It is decided which memory regions will be allotted when memory is allocated.

It monitors and reports when memory is freed or unallocated.

Several approaches for improving memory management effectiveness have been devised. To

efficiently organize memory, various memory allocation techniques have been proposed.

Allocation algorithms are used to decide which of the available slots in the partitioned memory

block can be assigned to a process. The most basic form of memory management, known as

partitioning, involves allocating a single contiguous portion of memory to each process. The

simplest form of partitioning is to divide memory into numerous fixed-size sections in advance,

which is known as fixed partitioning. Fixed partitioning is the simplest and oldest method of

putting multiple processes in the main memory. There are two types of fixed partitioning:

equal-sized partitioning and unequal-sized partitioning. Any process with a size less than or

equal to the partitioning size can be loaded into any of the partitions that are available. Overlays

and internal fragmentation are two types of problems that plague fixed-size partitions. When a

process's size exceeds the partition's size, it suffers from an overlaying problem, in which just

the information that is required is maintained in memory. Overlays are a difficult and time-

consuming process. When the memory allotted to a process is slightly greater than the amount

requested by the process, free space in the allocated memory is created, resulting in internal

fragmentation. When processes are given fixed-sized memory blocks, this happens. Each

process is assigned to the smallest division in which it fits in many queues, minimizing the

internal fragmentation problem.

RELATED WORK

Modern operating systems offer efficient memory management, and research is still ongoing

to improve how memory is allocated for applications. The main problem that memory

allocation algorithms face is efficiently allocating demanded memory blocks to demanding

applications with the shortest response time and the least amount of memory loss known as

fragmentation of memory (Soto and Sevaux, 2011). Finding a block of unused memory of a

suitable size is the task of completing an allocation request. Memory demands are met by

allocating chunks of memory from the stack or free store, which is a vast pool of memory.

Some parts of the stack are in use at any given time, while others are "free" (unused) and hence

accessible for future allocations. External fragmentation, which occurs when there are many

small gaps between allocated memory blocks, and invalidates their use for an allocation

request, is one issue that complicates the implementation (William, 2017). The information of

the allocator can bloat the size of (individually) minor allocations as well. The dynamic

Advanced Journal of Science, Technology and Engineering

ISSN: 2997-5972

Volume 4, Issue 3, 2024 (pp. 1-13)

3 Article DOI: 10.52589/AJSTE-JIHPGG70

 DOI URL: https://doi.org/10.52589/AJSTE-JIHPGG70

www.abjournals.org

memory allocation mechanism used can have a substantial impact on performance. The

overheads involved with a variety of allocators are illustrated in research completed by Digital

Equipment Corporation in 1994. The shortest average instruction route length for allocating a

single memory slot was 52 (as assessed by an instruction level profiler on a variety of software).

When a system has memory that is nominally free but that the computer can't use, it's called

memory fragmentation. When data is removed, the memory allocator splits and allocates

memory blocks as needed by programs; when data is deleted, more memory blocks are freed

up in the system and re-added to the available memory pool. Fragmentation occurs when the

operations of the allocator or the recovery of recently occupied memory segments result in

chunks or even bytes of memory that are too small or segregated to be utilized by the memory

pool. Fragmentation can eat up a lot of free memory on a computer, and it's a common cause

of unpleasant out-of-memory error messages.

Memory Management Approaches

There are many memory management approaches to choose from such as partitioned

allocation, paged memory management, single contiguous allocation, etc.

Partitioned Allocation: Primary memory is partitioned into numerous memory partitions,

which are normally contiguous portions of memory. Each partition could hold all of the data

needed for a single job or task. Memory management involves allocating a partition to a work

when it begins and unallocating it when the job is completed. To prevent jobs from interacting

with one another or with the operating system, partitioned allocation usually necessitates

certain hardware support. A lock-and-key system was utilized on the IBM System/360. Other

systems employed base and bounds registers to store the partition's limits and to signal

inappropriate accesses (Samanta, 2004).

Paged Memory Management: The basic memory of the computer is divided into fixed-size

units called page frames, and the virtual address space of the software is divided into pages of

the same size. Pages are mapped to frames by the hardware memory management unit. While

the address space appears to be contiguous, physical memory can be provisioned on a page

basis. Each job usually operates in its own address area when using paged memory

management. Meanwhile, certain single address space operating systems, such as IBM OS/VS2

SVS, which ran all jobs in a single 16MiB virtual address space, run all processes within a

single address space.

Single Contiguous Allocation: The simplest memory management strategy is single

contiguous allocation. The single application has access to the whole computer's memory, with

the exception of a small fraction allocated for the operating system. MS-DOS is an example of

a system that uses this method of memory allocation. This strategy could also be used by an

embedded system running a single application. By exchanging the contents of memory to

switch between users, a system with a single contiguous allocation can nonetheless multitask.

Memory Fragmentation

When a system has memory that is nominally free but that the computer can't use, it's called

memory fragmentation. When data is removed, the memory allocator splits and allocates

memory blocks as needed by programs; when data is removed, more memory space is

released in the system and added back to the memory pool. Fragmentation occurs when the

Advanced Journal of Science, Technology and Engineering

ISSN: 2997-5972

Volume 4, Issue 3, 2024 (pp. 1-13)

4 Article DOI: 10.52589/AJSTE-JIHPGG70

 DOI URL: https://doi.org/10.52589/AJSTE-JIHPGG70

www.abjournals.org

operations of the allocator or the recovery of recently occupied memory segments result in

blocks or even bytes of memory that are small or fragmented to be utilized by the memory

pool. Fragmentation can eat up a lot of free memory on a computer, and it's a common cause

of annoying out-of-memory error messages. There are two major types of memory

fragmentation;

Internal Fragmentation: This happens when the memory allocator keeps excess space

unfilled inside a block of memory assigned to a process, this error occurs. This frequently arises

because the processor's design requires memory to be partitioned into blocks of specific sizes,

such as four, eight, or sixteen bytes. When this happens, a process that requires 85 bytes of

Memory space, for example, may be given a block with 90 or even 92 bytes. The extra bytes

that the client doesn't require are wasted, and over time, these small chunks of unused memory

might add up to significant amounts of memory that the allocator can't use.

External Fragmentation: When the memory allocator leaves areas of unused memory blocks

between allotted memory blocks, this occurs. The free block is fractured if many memory

blocks are created in a continuous line but one of the intermediate blocks is freed. The allocator

can still utilize the block in the future if it needs memory that fits in that block, but it's no longer

usable for bigger memory needs. It can't be regrouped with the system's total free memory since

total memory must be contiguous in order to be usable for larger processes.

Memory Allocation Algorithms

In this paper, we looked at processes and their sizes on a memory partition. The algorithms'

efficiency is determined by their ability to use as much memory as possible. Since the holes

aren't ordered in any particular sequence, such as from smallest to largest or largest to smallest,

the worst case of binary search is always used. Where O(log(n)) is always the time complexity.

The algorithms used are first fit, best fit and worst fit.

First Fit: This works by scanning the memory from the beginning and allocating the first

available block that is large enough. It is one of the quickest algorithms since it searches as

little as possible. However, if the remaining unused memory spaces after allocations are too

small, they become waste. As a result, requests for significant amounts of memory cannot be

fulfilled. We will show which approach makes the most efficient use of memory in the

following problem.

Best Fit: Best fit requires searching the entire list of blocks for the one that is closest in size to

the request and allocating that block. Because it examines the smallest free partition first,

memory consumption is substantially better than First-fit. However, it is slower and may even

cause memory to fill up with tiny worthless holes.

Worst Fit: Worst fit requires searching the full list of blocks for the largest block and allocating

that block which reduces the rate at which tiny gaps are produced. This technique, on the other

hand, results in the largest residual block, which may be large enough to hold another process.

However, if a process that requires more memory arrives later, it will be unable to fit because

the largest hole has already been split and occupied.

Advanced Journal of Science, Technology and Engineering

ISSN: 2997-5972

Volume 4, Issue 3, 2024 (pp. 1-13)

5 Article DOI: 10.52589/AJSTE-JIHPGG70

 DOI URL: https://doi.org/10.52589/AJSTE-JIHPGG70

www.abjournals.org

Table 1: Processes and their sizes

Processes (P) Sizes (K)

P1 115

P2 250

P3 400

P4 300

P5 100

The memory is divided into five partitions as shown in Table 2. It has a total memory size of

1550 KB where the operating system (OS) takes 100k and the processes take 1450 KB. This is

indicated in the memory partition diagram given in Figure 1.

Table 2: Size of the memory partitions

Partitions/Holes Sizes (K)

1 200

2 150

3 400

4 250

5 450

Mathematical Model of the Algorithm

First Fit Analysis

Using the Table 1 data set, the First fit algorithm will search the memory partitions (holes)

from the upper level of the memory. We have partitions 200K, 150K, 400K, 250K, 450K.

Process P1 is first taken and the algorithm checks if the first partition is equal to or greater than

the size of the process. P1 = 115K and partition1 = 200K so P1 is allocated to the first partition.

i.e. P1 with the size 115K goes into partition 200K,

IF = (200 – 115) K = 85K(unused)

Next, take process P2 which is 250K, the First partition has been allocated to process P1, and

kernel
200K

150K

400K

250K

450K

0K
 100K

 300K

 450K

 850K

 1100K

1100K

1550

K
Figure 1: Pictorial Representation of the Memory Partitions

Advanced Journal of Science, Technology and Engineering

ISSN: 2997-5972

Volume 4, Issue 3, 2024 (pp. 1-13)

6 Article DOI: 10.52589/AJSTE-JIHPGG70

 DOI URL: https://doi.org/10.52589/AJSTE-JIHPGG70

www.abjournals.org

the algorithm starts checking with the second partition to know where the process can fit in.

The second partition is less than P2 and the algorithm proceeds to check the next partition

which is partition 3, the third partition is greater than P2. So, P2 is allocated to the third

partition. i.e. P2 with the size 250K goes into partition 400K,

IF = (400-250)K, = 150K(unused)

Next, take process P3 with size 400K, the First and third partitions have been allocated to

processes. The second partition is less than P3, the fourth partition is less than P4 but the fifth

partition is greater than P3 so P3 (400K) is allocated to the fifth partition (450K).

IF = (450-400)K = 50K(unused)

Next, take process P4 with the size 300K, P4 > IF1, P4 > EF2, P4> IF3, P4> EF4, P4> IF5.

Hence, P4 cannot be allocated.

Lastly, Process P5 with the size 100k is allocated to the second partition (150k) because the

second partition is greater than P5 and it is the first partition to consider.

 IF = (150-100)K = 50K(unused)

Table 3: First Fit IF and EF

Processes (P) Allocated

Partition No

IF (K) EF(K)

P1 1 85

P2 3 150

P3 5 50

P4 Not allocated 250

P5 2 50

Total 335 250

Total Memory Used = 115K + 250K + 400K + 100K= 865K

Memory Not used = 85K + 150K + 50K + 50K = 335K

% Total memory utilization = 1115/1450 *100 = 76.9%

% Internal fragmentation = 335/1450 * 100 = 23.10%

% External fragmentation = 250/1450 * 100 = 17.24%

Advanced Journal of Science, Technology and Engineering

ISSN: 2997-5972

Volume 4, Issue 3, 2024 (pp. 1-13)

7 Article DOI: 10.52589/AJSTE-JIHPGG70

 DOI URL: https://doi.org/10.52589/AJSTE-JIHPGG70

www.abjournals.org

Best Fit Analysis

Using table 1 and 2 data sets, Process P1 with size 115K (P1 = 115K), available partitions are

(200, 150, 400, 250, 450)K. The best fit algorithm searches the partitions and compares the

sizes then allocates the smallest partition that is big enough to accommodate the incoming

process. So P1(115K) is allocated to the partition of size 150K,

 IF = (150K – 115K) = 35K(unused)

Next, take process P2 with size 250K, remaining partitions to search through are: (200, 400,

250, 450)K partitions. The smallest partition that is big enough to accommodate P2 is the fourth

partition. Hence, process P2 is allocated into partition 250K,

 IF = (250K – 250K) = 0K.

Next is process P3 with size 400K and available partitions to search through are: (200, 400,

450)K partitions. So P3 is allocated to partition 400K,

 IF = (400K – 400K) = 0K.

 100K

P2=250K

P3=400K

0K

 300K

 450K

 850K

 1100K

1100K

1550K

kernel

200K

150K

400K

250K

450K

OS

P1=115K

IF=85K

P5=100K

IF=50K

IF=150K

EF=250K

IF=50K

Figure 2: First fit memory allocation Algorithm

Advanced Journal of Science, Technology and Engineering

ISSN: 2997-5972

Volume 4, Issue 3, 2024 (pp. 1-13)

8 Article DOI: 10.52589/AJSTE-JIHPGG70

 DOI URL: https://doi.org/10.52589/AJSTE-JIHPGG70

www.abjournals.org

Next, take process P4 with size 300K. Available partitions to search through are: (200, 450)K.

P4 is allocated to partition 450K,

IF = (450K – 300K) = 150K(used)

Lastly, take Process P5 with the size 100k, partitions to search through are: (EF1, IF5) i.e. 200K

and 150K. P5 is allocated to 150K

IF = (150K – 100K) = 50K(unused)

Table 4: Best Fit IF and EF

Processes (P) Allocated

Partition No

IF (K) EF(K)

P1 2 35

P2 4 0

P3 3 0

P4 5 - 200

P5 5 50

Total 85 200

Total Memory Used = 115K + 250K + 400K + 300K + 100K = 1165K

Memory Not used = 35K + 50K = 85K

% Total memory utilization = 1365/1450 *100 = 94.14%

% Internal fragmentation = 85/1450 * 100 = 5.86%

% External fragmentation = 200/1450 * 100 = 13.79%

Advanced Journal of Science, Technology and Engineering

ISSN: 2997-5972

Volume 4, Issue 3, 2024 (pp. 1-13)

9 Article DOI: 10.52589/AJSTE-JIHPGG70

 DOI URL: https://doi.org/10.52589/AJSTE-JIHPGG70

www.abjournals.org

Worst Fit Analysis

Allocate the largest partition to the first process on the queue irrespective of the position of the

partition. So Taking process P1 with size 115K and available partitions to search through are

(200, 150, 400, 250, 450)K. The largest partition = 450K, therefore allocate P1(115K) to 450K.

IF = 450 – 115K = 335(used).

Next, take process P2 with size 250K, available partitions to search through (200, 150, 400,

250) K and IF of 335K, largest is 400K, therefore process P2 with size 250K is allocated to

400K.

IF = 400K - 250K = 150K(unused)

Next, process P3 with the size 400K, available partitions to search through are (200K, 150K,

 450K

150K

450K

Figure 3: Best fit memory allocation Algorithm

 100K

P3=400K

P4=300K

0K

 300K

 850K

 1100K

1100K

1550K

kernel

200K

400K

250K

OS

EF=200K

P1=115K

IF=35K

P2=250K

IF=50

 150K
IF=100K

Advanced Journal of Science, Technology and Engineering

ISSN: 2997-5972

Volume 4, Issue 3, 2024 (pp. 1-13)

10 Article DOI: 10.52589/AJSTE-JIHPGG70

 DOI URL: https://doi.org/10.52589/AJSTE-JIHPGG70

www.abjournals.org

250K), IF of 335K and 150K. P3 > EF1, P3 > EF2, P3> IF3, P3> EF4, P4> IF5. Hence, P3

cannot be allocated.

Then, process P4 with the size 300K, available partitions to search from: (200K, 150K, 250K)

and IF of 335K and 150K. largest = 335K

IF = 335K - 300K = 35K(unused)

And lastly P5(100K) is allocated to 250k

IF = 250K - 100K = 150K(unused)

Table 5: Worst Fit IF and EF

Processes (P) Allocated

Partition No

IF (K) EF(K)

P1 5 -

P2 3 150

P3 Not allocated 0

P4 5 35 200

P5 4 150 150

Total 335 350

Total Memory Used = 115K + 250K + 300K + 100K = 765K

Memory Not used = 35K + 150K +150K = 335K

% Total memory utilization = 1115/1450 *100 = 76.90%

% Internal fragmentation = 335/1450 * 100 = 23.10%

% External fragmentation = 350/1450 * 100 = 24.14%

Advanced Journal of Science, Technology and Engineering

ISSN: 2997-5972

Volume 4, Issue 3, 2024 (pp. 1-13)

11 Article DOI: 10.52589/AJSTE-JIHPGG70

 DOI URL: https://doi.org/10.52589/AJSTE-JIHPGG70

www.abjournals.org

Table 6: TU%, EF% and IF% for the algorithms

 First Fit Best Fit Worst Fit

TU (%) 79.0 94.14 76.90

IF (%) 23.10 5.86 23.10

EF (%) 17.24 13.79 24.12

P1=115K

 450K

P4=300K

150K

450K

Figure 4: Worst fit memory allocation Algorithm

 100K

P2=250K

0K

 300K

 850K

 1100K

1550K

kernel

200K

400K

250K

OS

EF=200K

EF=150K

IF=150K

P5=100K

IF=35K

 150K

IF=150K

Advanced Journal of Science, Technology and Engineering

ISSN: 2997-5972

Volume 4, Issue 3, 2024 (pp. 1-13)

12 Article DOI: 10.52589/AJSTE-JIHPGG70

 DOI URL: https://doi.org/10.52589/AJSTE-JIHPGG70

www.abjournals.org

Figure 5: Bar chart showing the efficiency of the algorithms

Figure 6: Line graph showing the efficiency of the algorithms

RESULTS AND DISCUSSION

The analysis findings of the article are presented in the above tables and figures. It is observed

that best fit algorithms contribute less partition to external fragmentation. So it is clear that the

best-fit algorithm is more efficient in memory usage, whereas the performance of the first fit

and the worst fit algorithm are nearly the same.

From table 6, it is noteed that best fit algorithm has the minimum internal fragmentation of

5.86% with 94.14%. Worst fit algorithm has internal fragmentation of 23.1% with 79.72% of

total memory utilization allocation. First fit algorithm also has internal fragmentation of 23.1%

and its total memory utilization is 79.72%. Therefore it can be stated that best-fit used the

available memory space more efficiently than first-fit and worst-fit.

0

10

20

30

40

50

60

70

80

90

100

First Fit Best Fit Worst Fit

P
er

ce
n

ta
ge

 U
ti

liz
at

io
n

Memory Allocation Algorithms' Efficiency

TU (%) IF (%) EF (%)

0

20

40

60

80

100

0 0.5 1 1.5 2 2.5 3 3.5

P
er

ce
n
ta

g
e

U
ti

li
za

ti
o
n

Memory Allocation Algorithms' Efficiency

TU (%) IF (%) EF (%)

Advanced Journal of Science, Technology and Engineering

ISSN: 2997-5972

Volume 4, Issue 3, 2024 (pp. 1-13)

13 Article DOI: 10.52589/AJSTE-JIHPGG70

 DOI URL: https://doi.org/10.52589/AJSTE-JIHPGG70

www.abjournals.org

CONCLUSION

This research provided a detailed description and analysis of the three major memory allocation

methods used in multiple partition contiguous memory allocation schemes. While comparable

results were obtained using the same partitioning configuration on the data set of processes,

the mathematical model can be used to argue that the best fit method is generally the best in

terms of memory use.

REFERENCES

Abraham S., Peter B.G., and Greg G. “Operating System Concepts”, John Wiley & Sons,

 INC., January 1, 2002.

Erica K. “What Is Internal & External Memory Fragmentation?” [Online] (http:// everyday

 life. globalpost.com/internal-external-memory- fragmentation-28851.html) 2015

Ledisi G. k, Tamunoomie S. G. “Efficiency of Memory Allocation Algorithms Using

 Mathematical Model.” International Journal of Emerging Engineering Research and

 Technology Volume 3, Issue 9, September, 2015, PP 55-67 ISSN 2349-4395.

Muhammad A.A. “Challenges and Techniques for Algorithms in Relation with Today’s

 Real Time Needs.” International journal of Multi-Disciplinary Sciences and

 Engineering, vol.7, No.3, March 2016.

Paul G. “Multics Virtual Memory.” Tutorial and reflection. Retrieved May 9, 2012.

Rachael C., Okuthe P., Kogeda M.L. “An optimized main memory management

 partitioning placement algorithm.” Pan African Conference on science, Computing

 and Telecommunications (PACT), Kampala, Uganda, July 27-29, 2015.

Samanta D. “Classic Data Structures.” PHI Learning Pvt. Ltd. ISBN 8120318749, P. 94,

 2004.

Soto A.R.M and Sevaux M. “A mathematical model and meta-heuristic approach for a

 memory allocation problem.” Springer science and Business media, 2011.

 William S. “Operating Sytstem Internals and Design Principles.” March 20, 2017.

