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ABSTRACT: This paper examines the existence of maximal 

solution of the comparison differential system and also 

establishes sufficient conditions for the practical stability of the 

trivial solution of a nonlinear  impulsive Caputo fractional 

differential equations with fixed moments of impulse using the 

vector Lyapunov functions. First, it was discovered that the 

vector form of the Lyapunov function was majorized by the 

maximal solution of the comparison system. From the results 

obtained, it was established that the main system is practically 

stable in the sense of Lyapunov. 
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INTRODUCTION 

The history of fractional calculus has been about 300 years old, and its development is mainly 

focused on the pure mathematical field [27]. The earliest – more or less systematic studies of 

the concept, seem to have been made in the 19th century by Liouville, Riemann, Leibnitz, 

Caputo, etc. [37], and in the last four decades, it was observed that the advancement of 

fractional calculus has enabled the description of complex system behaviors through 

fractional differential systems (including many physical phenomenon having memory and 

genetic characteristics), thus providing new insights into their dynamics. 

One of the trends in the stability theory of solutions of differential equations is the so-called 

practical stability [8, 27, 31, 32, 33]. This aspect of stability was introduced by [24] and it is 

used in estimating the worst-case transient and steady-state responses together with verifying 

point-wise in time constraints imposed on the solution path or the trajectory curve.. 

Fundamental results have been obtained for fractional order derivative using the auxiliary 

Lyapunov’s functions which are analogues of vector Lyapunov functions, by means of the 

comparison method. 

Alongside the development of the theory of practical stability in recent years is the 

mathematical theory of impulsive differential equations which have experienced a massive 

research attention and development. Now, the theory of impulsive differential equations is 

richer than the corresponding theory of differential equations [16] as they constitute very 

important models for describing the true state of several real life processes and phenomena 

since many evolution processes are characterized by the fact that, at certain moments of time, 

they experience a change of state abruptly. These processes are assumed to be subject to short 

term perturbations whose duration is negligible in comparison with the duration of the 

process. Consequently, it is natural to assume that these perturbations act instantaneously, 

that is, in the form of impulses. For instance, many biological phenomena involving 

thresholds, bursting rhythm models in medicine and biology, optimal control models in 

economics, pharmacokinetics and frequency modulated systems do exhibit impulsive effects 

[16]. 

Moreover, the efficient applications of impulsive differential system require the finding of 

criteria for stability of their solutions [35], and one of the most versatile methods in the study 

of the stability properties of impulsive systems is the Lyapunov function (Lyapunov second 

method) The method was originally developed for studying the stability of a fixed point of an 

autonomous or nonautonomous differential equations. However, as was argued in [29], it was 

then extended from fixed points to sets, from differential equation to dynamical systems and 

to stochastic equations. 

Suffice to say that the novelty of the Lyapunov's second method over other methods of 

examining stability properties of impulsive differential systems like the Razumikhin 

technique, the use of matrix inequality, etc. stems from the fact that the method allows us to 

examine the stability of solutions without first solving the given differential equation by 

seeking an appropriate continuously differentiable function (called Lyapunov function) that is 

positive definite and whose time derivative along the trajectory curve is negative 

semidefinite. 
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The stability of the zero solution of impulsive differential equations have been extensively 

studied in [11,30]. Furthermore, the study of stability of fractional order systems is quite 

recent and one of the main difficulties in the application of the Lyapunov function to 

fractional order differential equations is the appropriate definition of its derivative among the 

fractional differential equations. Thus, to allay this problem, [1] adopted the choice of a 

Lyapunov function that is continuously differential, with a re-definition of the Dini derivative 

for the given fractional order system. This choice was necessary because, the choice of the 

Dini derivative for the fractional differential equation as was used in [17-18] had some 

“restrictions and difficulties” (see [1] and the references therein). 

Now, the stability of fractional order systems systems using the scalar Lyapunov function 

have been examined in [1-2,5,9,41]. Using the generalized Caputo fractional Dini derivative 

and scalar impulsive fractional differential equations, [2] established the comparison results 

together with sufficient conditions for the stability properties of impulsive fractional 

differential equations. However, the set-back in this approach arise from the fact that, when 

the system becomes complex or large, the scalar Lyapunov functions lacks a definite 

algorithm for handling such systems. Due to this pitfall, the use of vector Lyapunov functions 

becomes very necessary because of its ability to handle complex systems as well as large 

scale dynamical systems. The method of vector Lyapunov function involves splitting the 

Lyapunov functions into several components, so that each of the components can adequately 

describe the system state. In this way, Lyapunov functions are easily constructed, and the 

conditions ensuring the required stability are less restrictive (see [40] and the references 

therein). Fundamental results for the stability of impulsive Caputo fractional differential 

equations have been examined in [1] and [2].  

In this paper, the existence of maximal solution of the comparison system for vector 

Lyapunov function is established. Again, sufficient condition for the practical stability of 

impulsive Caputo fractional order systems is presented by means of the comparison principle. 

It was discovered that the vector form of the Lyapunov function is majorized by the maximal 

solution of the comparison system. The sufficient conditions for the practical stability of 

impulsive fractional order systems as established stressed the fact that the solution of the 

main system is practically stable. 

Preliminary Notes and Definitions 

Fractional calculus is seen as a natural generalization of the classical calculus of integer order 

and thereby allows for the extension of the traditional concepts of derivative and integral to 

functions with fractional orders. By this extension, functions with noninteger orders are much 

more flexible in describing real world systems (see [14,25,26,34,37]).  

There are several definitions of fractional derivatives and fractional integrals. 

General case. Let the number 0,1 −  nn  be given, where n  is a natural number, 

and (.)  denotes the Gamma function. 

Definition 2.1. 

The Riemann Liouville fractional derivative of order   of )(t  is given by (see [35]) 
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Definition 2.2. 

The Caputo fractional derivative of order   of )(t  is given by (see [35]) 

0

)(1 ,)()(
)(

1
)(

0

0
ttdssst

n
tD

t

t

nn

t

C

t −
−

= 
−− 


   

The Caputo derivative has many properties that are similar to those of the standard 

derivatives which make them easier to understand and apply. Also, the initial conditions of 

the Caputo fractional order derivative are also easier to interpret in physical context. 

Definition 2.3. 

The Grunwald-Letnikov fractional derivative of order   of )(t  is given by (See [1]) 
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and  

Definition 2.4. The Grunwald-Letnikov fractional Dini derivative of order   of )(t is 

given by (See [1]) 
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where rC  are the binomial coefficients and 
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h

tt 0  denotes the integer part of 
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Particular case (when n=1). In most applications, the order of   is often less than 1, so that 

)1,0( . For simplicity of notation, we will use  
DC

 instead of 
DC

t0
 and the Caputo 

fractional derivative of order   of the function )(t  is  
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3. Impulses in fractional differential equations 

Consider the initial value problem (IVP) for the system of fractional differential equations 

(FrDE) with a Caputo derivative for .10    
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Some sufficient conditions for the existence of the global solutions to (3.1) are considered in 

[7,11,22, 23,29,35,42].  

The IVP for FrDE (3.1) is equivalent to the following Volterra integral equation (See [2]), 
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Consider the IVP for the system of impulsive fractional differential equations (IFrDE) with a 

Caputo derivative for ,10    
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(ii)   is locally Lipschitz with respect to its second argument x  and 0)0,(  t  

Now, for any function ).,),([),( 0

NRtPCt +   we define the Caputo fractional Dini 

derivative as:  
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0tt   where NRtt   ,,),,[ 00  and there exists 0h  such that ].,[ 0 Ttrht −  
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In this paper, we define the following sets: 
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Suffice to say that the inequalities between vectors are understood to be component-wise 

inequalities. 

We will use the comparison results for the impulsive Caputo fractional differential equation 

of the type 
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Since ),( t  is locally Lipschitzian with respect to the second variable, we have that, 
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where 0L  is a Lipschitz constant 
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Using (4.8), equation (4.11) becomes, 
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Substituting (4.12) into (4.10) we have 
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Dividing through by 0h  and taking the +→ 0suplim has  we have, 
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Recall that, 
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From (3.6) and (3.7) in [1], we have that 
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Using condition (ii) of the Theorem 4.1, we obtain the estimate 

)),,(,())(,(,(),(  tmtgtttgtmDC = 

+                 (4.13) 

Also,  

))(())(()(,(),(),( 00 kkkkkkk tmtItttmandutm  += +++              (4.14) 

Now (4.14) with 1tt =  contradicts (4.6), hence (4.5) is true.    □  

For ],,[ 0 Ttt   we now establish that 
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Observe that the inequality (4.15) holds for 0tt =  

Assume that (4.15) is not true. Then there exists a point 1t such that ),(),( 21 21
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which is a contradiction, and so (4.15) is true. Thus, equations (4.5) and (4.15) guarantee that 
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equicontinuous. By the Arzela-Ascoli theorem, )},({  tu
i

 guarantees the existence of a 

subsequence )},({  tu
ij

 which converges uniformly to the function )(t  on ].,[ 0 Tt  Then we 

show that )(t  is a solution of (4.4). Thus, equation (4.4) becomes  
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Taking the →jiaslim  in (4.16) yields, 
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Hence, )(t  is a solution of (3.5) on ].,[ 0 Tt  We claim that )(t  is the maximal solution of   

(3.5). Then, from (4.5), we have that ].,[)(),(),( 0 Ttonttutm      

Suppose that in Theorem 4.1, ,0),( utg then we have the following results 

Corollary 4.1.  

Assume that Condition (i) of Theorem 4.1 holds and,  

         ++ andRRRPCi
NN ],[)(   such that 

  0),( +  tDC                 

(4.14) holds, and 
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MAIN RESULTS 

In this section, we will obtain sufficient conditions for the practical stability of the system 

(3.3). Again we assume .10    

Theorem 5.1. Assume that:  
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Then the practical stability of the trivial solution 0=u  of (3.5) implies the practical stability 

of the trivial solution 0=  of (3.3). 

Proof. Let  0  and +Rt0  be given. 

Assume that the solution (3.5) is stable. Then given 0)( b  and +Rt0 , there exists a 

positive function 0),( =  ot  which is continuous in 0t  for each   such that  
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i

iu
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=
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i ttbuttu
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000 ),(),,(      (5.1) 

where ),,( 00 uttu  is any solution of (3.5). 
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Choose ).,( 000 += tu  

Since ),( xt  is continuous, then by the property of continuity, given 0  there exists a 

positive function 0),(11 =  ot  that is continuous in ot  for each   such that the 

inequalities 

   − ),(),( 00tt  implies 10  −  

and as 0,0),( →→ t
 
then the inequalities  

  ),( 0010 tand         (5.2) 

are satisfied simultaneously. 

We claim that, if 10    then  ),,( 00tt . 

Suppose that this claim is false, then there would exists a point ),[ 01 ttt   and the solution 

),,( 00  tt  with 10    such that 

   = )()( 1 tandt  for  ),[ 10 ttt      (5.3) 

So that using equation (5.3); condition (iii) of Theorem 5.1 reduces to the form 
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for ),[ 10 ttt  and from Theorem 4.1, 
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where 
=

=
n

i

i uttt
1

00 ),,()(   is the maximal solution of (3.5). 

Then, using equations (5.4), (5.3), (5.5) and condition (iii) of Theorem 5.1 we arrive at the 

estimate 

  )(),,())(,()(
1

00110  buttttb
N

i

i  
=

 

which leads to a contradiction. 

Hence, the practical stability of the trivial solution 0=u  of (3.5) implies the practical 

stability of the trivial solution 0=  of (3.3). 
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CONCLUSION 

In this paper, the existence of the maximal solution of the comparison system   for vector 

Lyapunov function is established, and sufficient conditions for the practical stability of 

impulsive Caputo fractional order systems are presented by means of the comparison 

principle. It was discovered that the vector form of the Lyapunov function used was 

majorized by the maximal solution of the comparison system. The sufficient conditions for 

the practical stability of the omparison impulsive fractional order system as established went 

further to illustrate the fact that the solution of the main system is practically stable in the 

sense of Lyapunov. 
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