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ABTRACT: Classification techniques is an important factor in 

data analysis. Over the years, different classification method have 

been proposed for classification of dataset. In this paper, we 

compared three classifiers (LDA, QDA and SVM) in three 

imbalanced datasets (Iris, Pima and Glass data) and 

misclassification rate of the three classification method were 

compared. The experiments concentrated on analyzing the 

average misclassification rate among classifiers across the three 

dataset studied using the misforest imputation method to balance 

the dataset respectively. The results reveal that for the glass 

dataset, the QDA classifies the dataset better than the two other 

classification method studied, while for the iris and glass datasets, 

the LDA outperformed the other two classifiers studied. The 

conclusion in this study is that LDA have the least average 

misclassification error, followed by the QDA and then the SVM 

with an average misclassification rate of 0.2863.    

KEYWORDS: imbalanced data; misclassification rate; Average 

misclassification; classification. 
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INTRODUCTION 

In performing classification tasks, a discriminant analysis which aims at finding an independent 

and identically distributed training dataset and a discriminant function that will predict 

correctly the new instances is needed. Linear Discriminant Analysis is a supervised machine 

learning algorithm for classification and dimensionality reduction. It is widely used in 

multivariate statistical techniques for data analysis. Assumptions in LDA is that variables are 

assumed to be normally distributed with an equal covariance matrix. When performing 

discriminant analysis, users can discuss classification methods in which two or more groups 

and one or more independent variables are placed into one of the measured characteristics. 

Medical scientists investigate how groups (characterized by blood pressure, blood glucose 

levels, and age) differ across independent variables. (Fernandez et al, 2006) used discriminant 

analysis to Obtain the number of patients who had previously suffered a heart attack to classify 

if the patient would survive based on other variables. Quadratic Discriminant Analysis (QDA) 

is a variant of LDA in which an individual covariance matrix is estimated for every class of 

observations. QDA is particularly useful if there is prior knowledge that individual classes 

exhibit distinct covariance. One weakness of QDA is that it cannot be used as a dimensionality 

reduction technique. A support Vector machine is a supervised machine learning algorithm 

which performs classification by finding the optimal line which maximizes the distance 

between each class. it is used for both classification and regression task. 

The LDA and QDA are both very common traditional classifiers. Both method assumes 

multivariate Gaussian distribution and employ variance- covariance matrix but LDA assume 

equal covariance matrix unlike the QDA that estimates covariance matrix per class. In QDA, 

k

 is required for each class of  1, ,k K  rather than assuming 
k

=  as it is done in LDA. 

(Morrais and Lima, 2018) applied the principal component analysis with LDA and QDA for 

discriminants between healthy control and cancer samples using the MS data sets.  (Nikita and 

Nikitas, 2021) examined seven classification methods  with binary logistic, probability, and 

cumulative probability regression, LDA, QDA, artificial neural networks, and naıve Bayes 

classification, to examine skeletal sex estimation. Consequently, LDA may be more preferred 

in skeletal sex estimation than other methods. (Sarkodie and fergusson-res, 2021) used LDA 

and QDA to propose a flow regime identification which combine responses from a non-

intrusive optical sensor for air and water’s vertical upward gas-liquid flow. Different   

researched articles have used different machine learning classifiers that have been formed in 

recent years to resolve classification accuracy problems and evaluation metrics (Sarker, 2021; 

Yu et al.,2020; Alanaza et al., 2021). In ((Bickel and Levna, 2004; Pattison  and Gossink, 

1999), they wrote on FLD classification error in data space. (Davenport et al, 2007) wrote on 

the problem associated with establishing a classifier probability of misclassification error. 

several recent work has researched on efficient learning in low dimensional spaces. such as , 

in (Calderbank et al, 2009)) they explained that when dimensional data points  which is high 

have a sparse representation in some linear basis, then a soft-margin SVM classifier can be 

trained on a low dimensional projection of that data while keeping a performance in 

classification that is same as the result obtained in the original data space. 

This work is divided into five sections excluding the introduction. Section 2 explains briefly 

the procedures and methodology of the three classifiers. Section 3 contains the datasets, Section 

4 contains the Results, and comparative performance analysis of the three classifiers while the 

conclusion is presented in section 5. 
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Procedure and Experimental Methodology 

This section includes a description of the dataset, and evaluation matrices, as well as the process 

and methodology used in the study. 

Linear Discriminant Analysis: 

The LDA is given as 

( )1 1

1 2

1 2

1

                       (1.1)

Where  and  are the mean of eack class

 is the independent variable

 inverse of the pooled sample covariance matrice

T

ij oc ij

ij
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−

−

= = −
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=       (1.2) 

Equation 1.1  is the LDA defined by  Ronald A. Fisher and 1.2 is the discriminant mean. 

Classification Rule: 

Classify 𝑦1 to class 𝑚1 if 𝐿𝐷𝐴 ≥  𝐿𝐷𝐴̅̅ ̅̅ ̅̅   and 𝑦1to majority class if 𝑚2 if 𝐿𝐷𝐴 <  𝐿𝐷𝐴̅̅ ̅̅ ̅̅  

 

Quadratic Discriminant Analysis (QDA) 

The quadratic discriminant function is given as 

𝛿𝑘 = −
1

2
log|∑𝑘| −

1

2
(𝑥 − 𝜇𝑥)𝑇 ∑ (𝑥 − 𝜇𝑥) + log 𝜋𝑘

−1
𝑘                                            (2.26) 

Since QDA estimates a covariance matrix for each class, it has a greater number of effective 

parameters than LDA. The quadratic discriminant function is quadratic in nature and contains 

a second order terms.  

The classification rule for the quadratic discriminant function: 

�̂�(𝑥) = 𝑎𝑟𝑔 max
𝑘

𝛿𝑘(𝑥)                                                                                            (2.27) 

The classification rule is equally similar to LDA since all that is expected is to find the class k 

which maximizes the quadratic discriminant function. 

QDA Algorithm. 

1. Input independent variables 1( ,..., )nX x x=   of p samples 

2. Find the prior probability for each class 

3. Calculate the covariance matrix for each class 
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4. compute the QDA function  

5. Assign class label 

Support Vector Machine (SVM)                                                                                 

The idea of SVM go along with: Input vectors 𝐱 are mapped to a very significant dimension 

feature space 𝑧 through some nonlinear map 𝜙(𝐱), such that 𝑧 = 𝜙(𝐱). Thus, an optimal 

separating hyperplane is constructed. For a given training dataset with 𝑛 samples, 

 (𝑥1,   𝑦1), (𝑥2,   𝑦2), … , (𝑥𝑛,   𝑦𝑛), where 𝑥𝑖 is a feature vector in a d-dimensional feature space 

𝑅𝑑 and  𝑦𝑖 ∈  {1, +1} is the corresponding class label. The task is to find a classifier with a 

decision function 𝐹(𝑥, 𝜇, 𝜇0) = 𝛍𝑇𝐱 + 𝜇0. The SVM then finds an optimal hyperplane with the 

maximal margin that separates the data points in both groups, (Musa, 2012). To find the optimal 

separating hyperplane having maximal margin, we can minimize ∥ 𝜇 ∥ , that is, minimizing the 

objective function   

      Objective Function: min 
1

2
𝜇𝑇𝜇 

       Subject to; 

 𝑦𝑖( 𝛍𝑇𝐱 + 𝜇0) ≥ 1        𝑓𝑜𝑟  𝑖 = 1, … , 𝑛                             (3.11) 

 

where 𝛍 is the normal vector for the ‘‘separating’’ hyperplane, (𝜇, Ф(𝑥)) + 𝜇0 = 0 this can be 

transferred  within the two fold by reducing the subsequent primal lagrangian 

 Ld(𝜇, 𝜇0, 𝛼) =
1

2
𝜇′𝜇 − ∑ 𝛼𝑖{  𝑦𝑖[𝜇′𝜙(𝑥𝑖) + 𝜇0] − 1}

𝑛

𝑖=1

 

 

(3.12) 

 

With respect to μ and μ0 by using 
𝜕𝐿𝑑

𝜕𝜇
= 0 and 

𝜕𝐿𝑑

𝜕𝜇0
= 0 

 𝜕𝐿𝑑

𝜕𝜇
= 0,

μ = ∑ 𝛼𝑖𝑦𝑖𝜙(𝑥𝑖)                                                                 

𝑛

𝑖=1

 

(3.13) 

 

 

 𝜕𝐿𝑑

𝜕𝜇0
= 0, 𝜇 = ∑ 𝛼𝑖𝑦𝑖 = 0

𝑛

𝑖=1

 
(3.14) 

 

Making substitutions using (3.13) and (3.14), gives; 

 
𝐿𝑑(𝛼) = ∑ 𝛼𝑖 −

1

2
∑ 𝑦𝑖𝑦𝑗

𝑛

𝑖,𝑗=1

𝛼𝑖𝛼𝑗𝑘(𝑥𝑖, 𝑥𝑗)

𝑛

𝑖=1

   (3.15) 
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Where 𝑘(𝑥𝑖, 𝑥𝑗) = Φ′(𝑥𝑖)Φ(𝑥𝑗) is a Kernel which permits the evaluation of scalar product 

between a multi-scale areas beyond specifically understanding the non-linear mapping 

  Ld(𝛼)  is dependent on; 

                    𝛼𝑖 ≥ 0,    𝑖 = 1, … , 𝑛 

                                                                                                                     

∑ 𝛼𝑖𝑦𝑖

𝑛

𝑖=1

= 0 
(3.15) 

However, when there are intersection of learning set, that problem is inseparable, the restriction 

in working out the two lagrangian problem in (3.15) becomes; 

                  0 ≤ 𝛼𝑖 ≤ 𝑐,    𝑖 = 1, … , 𝑛 

 
∑ 𝛼𝑖𝑦𝑖

𝑛

𝑖=1

= 0 
(3.16) 

 

where (𝑥𝑖 , … , 𝑥𝑗) are the weights allocated to the  learning set 𝑥𝑖. If 𝛼𝑖 > 0, 𝑥𝑖 is called a 

support vector. 𝑐 is known as a regulation parameter used to achieve a trade-off between the 

learning precision and the complicated design to enable an excellent concept efficacy to be 

achieved. (Musa, 2012). 

Following the lagrangian criteria(𝛼𝑖, … , 𝛼𝑛), the decision function can be formulated as 

follows: 

 
𝑓(𝐱) = μ′𝐱 + 𝜇0 = ∑ 𝛼𝑖𝑦𝑖𝑘(𝑥, 𝑥𝑖) + 𝜇0                                          

𝑛

𝑖=1

 (3.16) 

where 𝐱 is the d-size vector of the test samples and 𝜇0 is the SVM predilection expression that 

rely upon the exert kernel which could be suggested segment of the kernel function, (Musa, 

2012). 

 It was discovered, by fulfilling the conditions that the values of a decision function at the 

support vectors ought to be given as, 𝑦𝑖, (𝑦𝑖 = ±1). 𝑓(𝑥𝑠) = 𝑦𝑠 = ±1. 

classification rule: 

1 if x >0  

1 if 0

p

p

p

x
x


= 

− 
 

Performance evaluation: 

The confusion matrix will be use to check the performance of the models. The accuracy will 

be tested as well as the misclassification error rate. 
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Accuracy=
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 

misclassification rate  =
𝐹𝑃+𝐹𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 

 

DATASETS 

1. Iris Dataset 

Edgar Anderson's Iris Data, often referred to as Fisher's or Anderson's iris dataset, is a classic 

dataset in the field of machine learning and statistics. It provides comprehensive measurements 

of floral attributes for three species of iris flowers. The primary purpose of the Iris dataset is to 

facilitate the study of pattern recognition and classification techniques. By using the 

measurements of iris flower attributes, researchers and students can explore various machine 

learning algorithms for distinguishing between the three iris species based on their 

morphological features. 

2. Glass Identification Dataset  

The "Glass" dataset is a comprehensive collection of chemical analysis data from 214 

observations across 10 variables. This dataset is commonly used for classification tasks where 

the goal is to predict the type of glass based on its chemical composition. The dataset is 

provided as a data frame and is available through the mlbench package in R. The primary 

objective of this dataset is to predict the type of glass based on its chemical composition. This 

predictive modeling task is essential in fields such as forensic science, where identifying the 

type of glass found at a crime scene can provide crucial evidence for investigative purposes. 

The classification of glass types in this dataset was initially motivated by criminological 

investigations. The ability to correctly classify and identify the type of glass found at a crime 

scene can significantly aid law enforcement agencies in reconstructing events and identifying 

potential suspects. Hence, the "Glass" dataset is a valuable resource for studying classification 

problems related to identifying types of glass based on chemical analysis. 

3. Pima Indians Diabetes Dataset 

The "Pima Indians Diabetes Database" is a well-known dataset that provides information on 

various health parameters of Pima Indian women, with the aim of predicting the onset of 

diabetes. The dataset consists of 768 observations (instances) of Pima Indian women with 500  

intances with no diabetes and 268 with diabetes  . There are 9 variables recorded for each 

observation. The main objective of this dataset is to predict whether a Pima Indian woman will 

develop diabetes based on her health attributes. This prediction task is crucial for early 

intervention and preventive healthcare strategies. The "Pima Indians Diabetes Database" is 

widely utilized in the field of medical research and data science for its relevance in predicting 

diabetes onset based on demographic, clinical, and lifestyle factors. The dataset can be 

accessible at https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database. 

 

 

https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database
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RESULTS 

Table 4.1: Result of Principal Component Analysis using the iris dataset 

   PC1     PC2   PC3     PC4     

Standard 

deviation 

1.729 0.917 0.38617 0.14774 

Proportion of 

Variance 

0.747 0.2102 0.03728 0.00546 

Cumulative 

Proportion 

0.747 0.9573 0.99454 1 

 

The result presented in table 4.1 shows the summary of the Principal Component Analysis 

(PCA) performed on the iris dataset. It was found that Principal Component 1 (PC1) captures 

the majority of the variance in the data (74.7%). This means that the largest variations in the 

data are along this component. Principal Component 2 (PC2) captures an additional 21.02% of 

the variance. Together with PC1, it explains 95.73% of the total variance, meaning the first two 

components capture most of the information in the dataset. Principal Component 3 (PC3) and 

Principal Component 4 (PC4) capture very little additional variance (3.728% and 0.546% 

respectively). Thus, they add little additional information beyond what is captured by the first 

two components. Based on this PCA, one could consider reducing the dataset from four 

dimensions to two dimensions (PC1 and PC2) without losing much information, as these two 

components capture over 95% of the total variance. 

Summary Result of the LDA , QDA and SVM for the iris dataset using the missForest 

imputation method 

Confusion Matrix and Statistics 

              Reference 

Prediction        setosa     Versicolor       Virginica 

setosa           15                0                     0 

Versicolor           0               13                      2 

Virginica             0                2                    13 

 

 

TABLE 4.2: Summary Result of the LDA, QDA and SVM for the iris dataset 

 LDA QDA SVM 

ACCURACY  0.9111 0.9111 0.8667 

95% CL (0.7878, 0.9752) (0.7878, 0.9752) (0.7321, 0.9495)  

NO 

INFORMATION 

RATE 

0.3333 0.3333  0.3333  

    P-VALUE [ACC > 

NIR] 
8.46𝑒−16 8.46𝑒−16 1.905𝑒−13 

KAPPA 0.8667 0.8667 0.8  
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The result presented in Table 4.2 revealed that the LDA model has an overall accuracy of 

91.11%, indicating it correctly classifies most instances. The model perfectly classifies all 

instances of setosa. The LDA model was found to perform well for versicolor and virginica 

with some misclassifications, reflected in the slightly lower sensitivity and specificity for these 

classes. The Kappa value of 0.8667 indicates substantial agreement between the predicted and 

actual classifications, beyond what would be expected by chance. Hence, the classification 

model performs very well on this dataset, especially in identifying setosa instances accurately. 

There are minor misclassifications between versicolor and virginica, which is common given 

the overlap between these two species. For the QDA model, it achieved an accuracy of 91.11% 

just like the LDA, indicating it correctly classifies most instances. The model was found to 

perfectly classifies all instances of setosa. The model performs well for versicolor and 

virginica, with some misclassifications, reflected in the slightly lower sensitivity and 

specificity for these classes. The Kappa value of 0.8667 indicates substantial agreement 

between the predicted and actual classifications, beyond what would be expected by chance. 

Hence, the QDA model performs very well on this dataset with a minor misclassifications 

misclassifications between versicolor and virginica just like the LDA. The SVM model 

achieved an accuracy of 86.67%, Which performed poorly when compared with the result from 

the LDA and QDA. The model perfectly classifies all instances of setosa. The model performs 

well for versicolor and virginica, but there are some misclassifications between these two 

species, reflected in the slightly lower sensitivity and specificity for these classes. The Kappa 

value obtained was 0.8 which is slightly different from what was obtained in LDA and QDA. 

Hence, the SVM model performs very well on this dataset, especially in identifying setosa 

instances accurately.  

 

 

STATISTICS BY 

CLASS 

   

 Setos

a 

Versicol

or 

Virginic

a 

Setos

a 

Versicol

or 

Virginic

a 

Setosa Versicol

or 

Virgini

ca 

SENSITIVITY 1.000

0 

0.8667 0.8667 1.000

0 

0.8667 0.8667 1.0000 0.8000 0.8000 

SPECIFICITY 1.000

0 

0.9333 0.9333 1.000

0 

0.9333 0.9333 1.0000 0.9000 0.9000 

POSITIVE 

PREDICTED 

1.000

0 

0.8667 0.8667 1.000

0 

0.8667 0.8667 1.0000 0.8000 0.8000 

NEGATIVE 

PRDICTED 

1.000

0 

0.9333            0.9333            1.000

0 

0.9333            0.9333            1.0000 0.9000 0.9000 

PREVALENCE 0.333

3 

0.3333 0.3333 0.333

3 

0.3333 0.3333 0.3333 0.3333 0.3333 

DETECTION RATE 0.333

3 

0.2889 0.2889 0.333

3 

0.2889 0.2889 0.3333 0.2667 0.2667 

DETECTION 

PREVALENCE 

0.333

3 

0.3333 0.3333 0.333

3 

0.3333 0.3333 0.3333 0.3333 0.3333 

BALANCED 

ACCURACY 

1.000

0 

0.9000 0.9000 1.000

0 

0.9000 0.9000 1.0000 0.8500 0.8500 
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Table 4.3 Result of Misclassification Error Rate for the LDA, QDA and SVM using the 

Iris dataset 

Methods  LDA QDA SVM 

Misclassification 

Error Rate  

0.0889 0.0889 0.1333 

 

The result obtained in Table 4.3 showed that both LDA and QDA models have the same 

misclassification error rate of 8.89%, indicating they performed equally well and better than 

SVM in terms of classification accuracy on the Iris dataset. The SVM model has a higher 

misclassification error rate of 13.33%, showing it was less accurate than both LDA and QDA. 

Hence, based on the misclassification error rates, both LDA and QDA outperformed SVM on 

the Iris dataset, achieving a lower error rate and higher accuracy. 

TABLE 4.4. Result of Principal Component Analysis using the Glass dataset 

   PC1     PC2 PC3     PC4     PC5 PC6 PC7 PC8 PC9 

Standard 

deviation 

1.5898 1.438

2 

1.1901 1.0566 0.9553 0.7167 0.6066 0.2546 0.1096 

Proportion 

of Variance 

0.2808 0.229

8 

0.1574 0.124 0.1014 0.0570 0.0408 0.0072 0.0013 

Cumulative 

Proportion 

0.2808 0.510

7 

0.6680 0.7921 0.8935 0.9505 0.9914 0.9986 1 

 

The result presented in Table 4.4 showed that the first few principal components (PC1 to PC4) 

capture the majority of the variance in the Glass dataset (79.21%). It was found that up to PC7 

captures over 99% of the variance, suggesting that the remaining components (PC8 and PC9) 

contribute very little additional information. This information can be used to reduce the 

dimensionality of the dataset effectively, retaining most of the important information while 

simplifying the dataset for further analysis or modeling. Hence, the choice of keeping the first 

4 to 7 principal components is expected to balance between simplifying the model and retaining 

as much variance as possible. 

Summary Result of the LDA, QDA and SVM  for the Glass dataset using the missForest 

imputation method 

Confusion Matrix and Statistics 

            Reference 

Prediction   1  2  3  5  6  7 

           1 10  4  2  0  0  0 

           2 11 14  3  1  1  1 

           3  0  0  0  0  0  0 

           5  0  3  0  0  1  0 
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           6  0  1  0  0  0  0 

           7  0  0  0  2  0  7 

TABLE 4.5: Summary Result of the LDA, QDA and SVM  for the Glass dataset 

 LDA   QDA SVM 

ACCURAC

Y  

0.5082          0.5738           0.5246          

95% CL (0.377, 0.6386) (0.4406, 0.6996) (0.3927, 0.654)  

NO 

INFORMAT

ION RATE 

 0.3607          

  

0.3607  0.3607  

    P-VALUE 

[ACC > NIR] 

0.01288         0.0005611 0.006438        

KAPPA 0.3007         0.381 0.3387  

STATISTICS BY CLASS 
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The result presented in section 4.4 showed that the overall accuracy of the LDA model is 

50.82%, which is significantly better than random guessing (No Information Rate of 36.07%). 

The model performs well for predicting Class 7 with high sensitivity and specificity. The model 

struggles with Classes 3, 5, and 6, showing 0% sensitivity. The kappa statistic of 0.3007 

indicates fair agreement between the predicted and actual classifications. 

The result presented in section 4.5 showed that the overall accuracy of the QDA  model is 

57.38% in predicting the type of glass, which is better than random guessing (No Information 

Rate of 36.07%). The model was found to perform well for predicting Class 1 and Class 7, with 

high sensitivity and balanced accuracy. The model struggles with Classes 3, 5, and 6, showing 

0% sensitivity. The kappa statistic of 0.381 indicates a fair agreement between the predicted 

and actual classifications 

The result presented in section 4.6 showed that the overall accuracy of the SVM model is 

52.46% for predicting the type of glass, which is significantly better than random guessing (No 

Information Rate of 36.07%). The model performed moderately well for predicting Class 1 and 

Class 7, with relatively high sensitivity and balanced accuracy. The model struggles with 

Classes 3 and 6, showing 0% sensitivity.The kappa statistic of 0.3387 indicates a fair agreement 

between the predicted and actual classifications. 

Table 4.4. Result of Misclassification Error Rate for the LDA, QDA and SVM using the 

Glass dataset 

Methods  LDA QDA SVM 

Misclassification 

Error Rate  

0.4918 0.4262 0.4754 

 

The result presented in Table 4.4 shows the misclassification error rates for three different 

classification methods: Linear Discriminant Analysis (LDA), Quadratic Discriminant Analysis 

(QDA), and Support Vector Machine (SVM) when applied to the Glass dataset using the 

missForest imputation method. The QDA has the lowest misclassification error rate (42.62%), 
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indicating it performed best among the three methods for the Glass dataset. This suggests that 

the Glass dataset likely contains non-linear relationships that QDA can model effectively. LDA 

has the highest misclassification error rate (49.18%), implying that its linear decision 

boundaries were not as effective for this dataset. SVM has an intermediate error rate (47.54%), 

showing it performed better than LDA but worse than QDA. The choice of method should 

consider the complexity and nature of the dataset, with QDA being preferable here due to its 

better handling of non-linear relationships as indicated by its lower misclassification error rate. 

Table 4.5. Result of Principal Component Analysis using the PIMA dataset 

   PC1     PC2 PC3     PC4     PC5 PC6 PC7 PC8 

Standard 

deviation 

1.449 1.3188 1.0132 0.9355 0.8701 0.8285 0.6467 0.6308 

Proportion of 

Variance 

0.2625 0.2174 0.1283 0.1094 0.0946 0.0858 0.0523 0.0497 

Cumulative 

Proportion 

0.2625 0.4798 0.6082 0.7176 0.8121 0.8980 0.9503 1 

 

The result presented in Table 4.5 showed that the first few principal components capture most 

of the variance in the PIMA dataset, with the first component alone explaining 26.25% of the 

variance. It was found that up to the sixth principal component captures nearly 90% of the total 

variance, suggesting that these components retain most of the information present in the 

original dataset. This reduction in dimensionality can be useful for visualization, noise 

reduction, and improving the efficiency of machine learning algorithms. 

Summary Result of the LDA for the PIMA dataset using the missForest imputation 

method 

Confusion Matrix and Statistics 

             Reference 

Prediction   neg pos 

         neg  135  49 

         pos   15  31 

TABLE 4.6: Summary Result of the LDA for the PIMA dataset 

 LDA    QDA SVM 

ACCURACY  0.7217            0.6957                 0.7043                 

95% CL (0.659, 0.7786) (0.6318, 0.7544) 

 

(0.6408, 0.7625)

  

NO INFORMATION 

RATE 

 0.0148                  

  

0.6522           0.6522            

P-VALUE [ACC > NIR] 0.0148         0.0932627        

 

0.0543270             
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The result obtained in section 4.6 show that the LDA model has an accuracy of 72.17%, which 

is significantly better than the no-information rate of 65.22%. The high sensitivity (90.00%) 

indicates the model is very good at identifying negative cases, but the low specificity (38.75%) 

shows it struggles to correctly identify positive cases. The model's Kappa value of 0.3191 

suggests fair agreement between the predicted and actual classes. The positive predictive value 

(73.37%) and negative predictive value (67.39%) indicate the model's reliability in predicting 

negative and positive classes, respectively. The result indicated that while the LDA model 

performs well in identifying negative cases, improvements are needed in correctly identifying 

positive cases to achieve better balanced accuracy. For the QDA model it has an accuracy of 

69.57%, which is slightly higher than the no-information rate of 65.22%, but not significantly 

better as indicated by the p-value (0.0932627). The high sensitivity (86.67%) indicates the 

model is very good at identifying negative cases, but the low specificity (37.50%) shows it 

struggles to correctly identify positive cases. The model's Kappa value of 0.2648 suggests fair 

agreement between the predicted and actual classes. The positive predictive value (72.22%) 

and negative predictive value (60.00%) indicate the model's reliability in predicting negative 

and positive classes, respectively. The result underscored that while the model performs well 

in identifying negative cases, improvements are needed in correctly identifying positive cases 

to achieve better balanced accuracy. The SVM model has an accuracy of 70.43%, which is 

slightly higher than the no-information rate of 65.22%, but not significantly better as indicated 

by the p-value (0.0543270). The high sensitivity (88.00%) indicates the model is very good at 

identifying negative cases, but the low specificity (37.50%) shows it struggles to correctly 

identify positive cases. The model's Kappa value of 0.2813 suggests fair agreement between 

the predicted and actual classes. The positive predictive value (72.53%) and negative predictive 

value (62.50%) indicate the model's reliability in predicting negative and positive classes, 

respectively. The result implies that the SVM model performs well in identifying negative 

cases, but improvements are needed in correctly identifying positive cases to achieve better 

balanced accuracy. 

Table 4.7. Result of Misclassification Error Rate for the LDA, QDA and SVM using the 

PIMA dataset 

Methods  LDA QDA SVM 

Misclassification 

Error Rate  

0.2782 0.3043 0.2956 

 

KAPPA 0.3191         0.2648                                      0.3387  

SENSITIVITY 0.9000 0.8667           0.8800           

SPECIFICITY 0.3875 0.3750           0.3750           

PREDICTED VALUE (+) 0.7337 0.7222           0.7253           

PREDICTED VALUE(-) 0.6739 0.6000           0.6250           

PREVALENCE 0.6522           0.6522           0.6522           

DETECTION RATE 0.5870    0.5652                  0.5739           

DETECTION 

PREVALENCE 

0.8000             0.7826                 0.5739                

BALANCED ACCURACY 0.6438           0.6208                                0.6275                                                     
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The result presented in Table 4.7 showed that the LDA has the lowest misclassification error 

rate (27.82%), which implies that the LDA performs the best among the three methods for this 

dataset. The QDA was found to record the highest misclassification error rate (30.43%), QDA 

performs the worst. The SVM with a misclassification error rate of 29.56% shows that the 

SVM performs better than QDA but worse than LDA. Hence, the LDA is the most accurate 

method for classifying the PIMA dataset among the three methods tested, followed by SVM, 

and then QDA. These results suggest that LDA is better suited for this particular dataset and 

problem. 

Table 4.8. Result of Average Misclassification Error Rate for the LDA, QDA and SVM 

across the various datasets considered in this study. 

Dataset LDA QDA SVM 

Iris  0.0889 0.0889 0.1333 

Glass 0.4918 0.4262 0.4754 

Pima 0.2782 0.3043 0.2956 

Average 

Misclassification 

Error Rate 

0.2863 0.2732 0.3014 

 

FIG.1 Misclassification Error Rate for the LDA, QDA and SVM across the various datasets 

considered in this study. 

 

 

CONCLUSION 

The result presented in Table 4.8 shows that on average, QDA (0.2732) has the lowest 

misclassification error rate across the datasets considered, followed closely by LDA (0.2863). 

SVM (0.3014) generally has a slightly higher average error rate compared to both LDA and 

QDA. QDA appears to have a slight edge in terms of average performance across these 

datasets, but the differences are relatively small. These error rates provide a quantitative 

measure of how well each method performs on average in classifying instances across different 

datasets. They are essential for comparing the effectiveness of different classification 

algorithms in various real-world applications. 
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