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ABSTRACT: This paper introduces a novel hybrid activation 

function by combining five popular activation functions 

(Sigmoid, ReLU, Tanh, Leaky ReLU, and ELU) with adjustable 

coefficients. This integrated approach aims to mitigate the 

limitations of individual functions, such as vanishing gradients 

and inactive neurons. Our analysis, including mathematical 

derivations and simulations, demonstrates that the hybrid 

function enhances gradient flow in deeper layers, accelerates 

convergence, and improves generalization compared to 

individual functions. This work highlights the potential of mixed 

activation functions to significantly improve the learning 

dynamics of deep neural networks. 

KEYWORDS: Neural Networks, Activation Functions, ReLU, 

Sigmoid, Tanh, Leaky ReLU, ELU, Gradient Flow, Vanishing 

Gradient Problem, Deep Learning. 
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INTRODUCTION 

Activation functions are essential for neural network performance and efficiency, allowing 

the network to learn complex patterns and relationships in data. Various activation functions 

have been developed over the years, each with its strengths and weaknesses. In [26], it was 

argued that the number of convolutional layers in a convolutional neural network (CNN) 

significantly impacts model efficiency. While deeper networks can achieve higher accuracy, 

they however require more computational resources and time. This balance between depth 

and efficiency is indeed crucial for designing practical models. Arguing further, it was 

maintained that the strength of this approach also include improved latency achieved by 

ResNet blocks which uses identity shortcut in the basic building blocks of ResNet-18. The 

block, which is repeated throughout the network to prevent vanishing gradient problem 

during backpropagation, was believed to aid improvement in the computational and time 

complexity which in turn guarantee efficiency of the deep learning algorithm (see also [1 - 

8]).  

Furthermore, in paper [27], it was posited that different activation functions have different 

properties and thus can affect the convergence and accuracy of a model. This idea, as was 

argued by the researchers, could lead to diffusion which in turn can cause concentration to 

change with time in relation with diffusive flux under the assumption of steady state (see also 

[9 -12]). Again, for instance, transportation programming model can be formulated as a 

neural network model by using the input layer, hidden layer, output layer, the loss function 

and the training approach. Also, this model can be systematically expressed through 

formulating, predicting route planning, traffic prediction and demand forecasting outcomes 

based on driven labeled inputs data which, in practice, could be adopted by the neural 

network to enhance route optimization, improve scalability as well as foster flexibility (see 

[28]). 

Now, Artificial Neural Networks (ANNs) have emerged as pivotal instruments in machine 

learning and artificial intelligence due to their capacity to mimic intricate, non-linear 

correlations between input and output data. The choice of activation function significantly 

affects the learning process, governing how signals propagate through the network and how 

gradients are computed during backpropagation. Recent breakthroughs in neural network 

research have explored the integration of several activation functions to develop a more 

versatile and expressive model. A convex hybrid combination of activation functions, 

including Sigmoid, ReLU, Tanh, Leaky ReLU, and ELU, can leverage the advantages of each 

function while alleviating their respective shortcomings (see [13-25]). 

Given this background, this study however seeks to explore the potential of combining 

multiple activation functions to enhance neural network training and performance. The most 

commonly used activation functions include Sigmoid, Rectified Linear Unit (ReLU), 

Hyperbolic Tangent (Tanh), Leaky ReLU, and Exponential Linear Unit (ELU). Each function 

has distinct characteristics that make it suitable for different types of problems and network 

architectures. By combining these functions, the aim is to leverage on their strengths while 

mitigating their weaknesses, potentially leading to improved neural network performance 

across various tasks. 
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PRELIMINARIES AND DEFINITIONS 

Activation Functions 

The function of activation mechanisms in neural networks has undergone substantial 

evolution in recent decades. Early neural networks predominantly utilized the Sigmoid 

function, which transforms inputs to a specified range (0,1), rendering it especially 

advantageous for binary classification applications [6-7]. The compressive characteristics of 

the Sigmoid function resulted in the vanishing gradient problem, particularly in deep 

networks, since substantial negative or positive inputs were transformed into minimal 

gradients, hence impeding the learning process [8]. 

To address the vanishing gradient problem, the Tanh function was developed, which operates 

comparably to the Sigmoid function but maps inputs to the interval (−1,1), hence enhancing 

gradient propagation for inputs close to zero [9-10]. Notwithstanding this enhancement, Tanh 

nevertheless experienced saturation for substantial positive and negative inputs, resulting in 

persistent difficulties in training deep networks. 

The innovation occurred with the use of ReLU by [10-11], significantly enhancing training 

speed and precision in deep networks. The straightforward piecewise linear nature of 

ReLU—producing the input when positive and zero otherwise—facilitated effective 

backpropagation, circumventing the saturation problems seen with Sigmoid and Tanh[12-14]. 

The simplicity of ReLU facilitated its extensive acceptance in cutting-edge models, especially 

in convolutional neural networks [15]. 

However, ReLU added a new problem: dead neurons, which occur when neurons become 

inactive due to zero gradients for negative inputs, hindering weight updates. To resolve this 

issue, researchers introduced Leaky ReLU [16], which permits a little, non-zero gradient for 

negative inputs, and ELU [17-18], which incorporates a smooth curve for negative inputs to 

avert dead neurons and enhance gradient flow in negative domains. 

Integration of Activation Functions 

Although individual activation functions such as ReLU and ELU have demonstrated efficacy, 

recent studies indicate that amalgamating various activation functions may provide further 

advantages. [13] investigated various combinations of activation functions and found that 

mixed activation functions could improve model performance by optimizing saturation, non-

linearity, and gradient propagation. The concept of merging activation functions has gained 

popularity as a method to utilize the advantages of each function while mitigating their 

shortcomings.[19-20]  

For instance, Sigmoid and Tanh offer smooth gradients for minimal input values, whereas 

ReLU and Leaky ReLU mitigate diminishing gradients for positive inputs. The exponential 

characteristics of ELU provide enhanced adaptability for managing negative inputs. The 

linear combination of these functions yields an activation function that responds variably 

based on the input range, strengthening the network's capacity to simulate intricate 

interactions  
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Gradient Flow and Expressiveness 

A primary problem in deep learning is maintaining efficient gradient flow during back-

propagation, especially in deep networks where vanishing and expanding gradients can 

hinder learning [10,22]. The integration of activation functions mitigates this issue by 

enabling gradients to persist across a broader spectrum of input values. ReLU guarantees 

robust gradients for positive inputs, but Leaky ReLU and ELU maintain non-zero gradients 

for negative inputs, thus averting dead neurons. Simultaneously, Tanh and Sigmoid yield 

smooth gradients for diminutive inputs, enhancing gradient stability in proximity to zero [23]. 

Furthermore, the expressiveness of neural networks—their capacity to simulate intricate 

functions—can be augmented by integrating several activation functions [8-9]. Each function 

contributes various forms of non-linearity, enhancing the network's ability to mimic multiple 

input-output interactions [24]. Combining saturating and non-saturating activation functions 

enhances the network's versatility, potentially augmenting its generalization to novel input 

[25]. 

Hybrid Convex Combination 

A hybrid convex combination of functions involves a combination of functions that are 

weighted by coefficients that sum to one and are non-negative. This concept is a 

generalization of the standard convex combination used primarily in convex analysis. The 

"hybrid" aspect typically refers to combinations of functions that are not necessarily linear or 

that belong to different types or classes. 

The "hybrid" aspect may imply different characteristics such as: 

For ,}{ 1

n

iif =  where each function RRf d

i →:   

A hybrid convex combination of these functions can be formally expressed as: 

1

( ) ( )
n

i i

i

f x f x
=

=
          (1) 

where ,dRx  a vector in the domain of all functions 
=
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The functions are defined on different but overlapping domains in a piecewise manner. 
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MATERIALS AND METHODS 

This section outlines the approach used to explore the effects of combining multiple 

activation functions in neural networks. It includes the mathematical formulations, the 

procedure for combining activation functions, the experimental setup, and the analysis 

methods used to evaluate the impact of this approach on network performance. 

The materials used in this research include: 

Activation Functions  

We selected five popular activation functions, each with distinct properties influencing 

gradient flow, non-linearity, and expressivity: Sigmoid, ReLU, Tanh, Leaky ReLU, and ELU. 

Computational tools like Python were used to implement the algorithms, along with standard 

machine learning libraries, such as NumPy for mathematical operations and Matplotlib for 

graphing. Although no particular datasets were used, we took into consideration the behavior 

of the activation functions for a wide range of input values, especially the interval [−5,5], 

which is common in neural network inputs. 

Methodology 

The following steps outline the detailed methods used to construct, analyze, and evaluate the 

combined activation function: 

Activation Function Definitions 

The following five activation functions were selected based on their prevalence in neural 

networks: 

1. Sigmoid Activation Function 

1
( )

1 z
z

e


−
=

+           (2) 

The Sigmoid function squashes input values to the range (0,1) and is smooth with a positive 

gradient. However, for large positive or negative inputs, it tends to saturate, causing the 

vanishing gradient problem [1]. 

2. ReLU (Rectified Linear Unit) 

Re ( ) max(0, )LU z z=           (3) 

ReLU outputs the input directly if it is positive and 0 otherwise. It is computationally 

efficient and widely used but suffers from dead neurons for negative inputs, where the 

gradient becomes zero [2]. 

3. Tanh Activation Function 

Tanh( )
z z

z z

e e
z

e e

−

−

−
=

+           (4) 
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Tanh is similar to Sigmoid but maps inputs to the range (−1,1), providing symmetry around 

zero. It suffers from the vanishing gradient problem for large inputs, similar to Sigmoid [3-4]. 

4. Leaky ReLU Activation Function 

0
Re ( )

0

z if z
Leaky LU z

z if z


=

        (5) 

Leaky ReLU introduces a small negative slope (𝛼) for z≤0 to address the problem of dead 

neurons seen in ReLU [5]. 

5. ELU (Exponential Linear Unit) 

( )

0
( )

1 0z

z if z
ELU z

e if z


=

− 
       (6) 

ELU combines the simplicity of ReLU with a smoother curve for negative inputs, preventing 

dead neurons and providing exponential growth for negative values [6]. 

Hybrid Combination of Activation Functions 

The main objective of this study is to build an activation function that combines the strengths 

of all five selected functions. Each function's coefficients accomplish this, giving the output 

flexibility and customizability. 

In mathematical form, the combined activation function is: 

1 2 3 4 5( ) ( ) Re ( ) tanh( ) Re ( ) ( )f z z LU z z Leaky LU z ELU z     = + + + +
,  

 (7) 

where 54321 ,,,,   are the linear coefficients for each activation function. 

Coefficient Selection 

For this research, we set the following values for the coefficients to guarantee that the 

contributions of each activation function are balanced and the result remains non-trivial: 

1 2 3 4 50.1, 0.2, 0.25, 0.2, 0.25    = = = = =  

This set of coefficients ensures that the combined activation function retains unique 

contributions from each activation function, without any redundancy. 

Mathematical Formulation of the Combined Function 

Given the selected coefficients, the resulting combined activation function can be written 

explicitly as: 

( ) 0.1 ( ) 0.2Re ( ) 0.25 tanh( ) 0.2 Re ( ) 0.25 ( )f z z LU z z Leaky LU z ELU z= + + + +                  
(8) 
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This combined function is applied element-wise in a neural network, where each layer's 

output is passed through this activation function. 

Why These Coefficients Work 

The coefficients 0.1, 0.2, 0.25, 0.2, and 0.25 are randomly picked to sum up to 1 and achieve 

positivity by definition. In this combination, we also observe the Diverse Effects. For 

example, the Sigmoid contributes to the smooth squashing behavior, converting inputs to a 

range between 0 and 1. ReLU adds piecewise linearity and sparsity by setting the zero value 

of negative inputs. Tanh maps inputs to the range (−1,1) and adds symmetric non-linearity. 

Leaky ReLU prevents dead neurons from negative inputs by allowing a small gradient for 

𝑧<0. 

ELU smooths out the activation for negative inputs, which can reduce the vanishing gradient 

problem. 

Algorithm for Hybrid Combination of Activation Functions 

This algorithm constructs a new activation function by combining five different activation 

functions (Sigmoid, ReLU, Tanh, Leaky ReLU, and ELU). The linear combination uses 

predetermined coefficients that are real constants. The goal is to evaluate the combination of 

these functions at any input and use it in a neural network input scalar value z or z (the input 

to the neuron), coefficient 25.0,2.0,25.0,2.0,1.0 54321 =====   for the activation 

functions. 

i. Define the five activation functions and set the coefficient for a hybrid combination. 

ii. Apply to the neural network layer Z W A b= + ; W = is the weight matrix, A is the 

input of the previous layer, b is the bias vector. 

iii. The output ),(zfA =  where )(zf  is the hybrid combination of the activation 

functions applied to .z  

The back propagation process by computing the gradient, the derivative of the combined 

activation function to z, given that each activation has a known derivative, from (7) 

'( ) 0.1 '( ) 0.2Re '( ) 0.25 tanh'( )

0.2 Re '( ) 0.25 '( )

f
f z z LU z z

z

Leaky LU z ELU z




= = + +


+ +       (9) 

( )
( )

( ) ( ) ( )

2

2

2

'( ) 0.1 0.2 1
1

0.25 1 tanh ( ) 0.2 1 0.25 1 0

z

z

f e
f z

z e

z z

 
  = = +

  +
 

+ − + + 
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( )
( )

2
2

2
'( ) 0.1 0.25 1 tanh ( ) 0.65

1

0

z

z

f e
f z z

z e

z

 
  = = + − +
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 
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( )

2
2

2
'( ) 0.1 0.25 tanh ( ) 0.90

1

0

z

z

f e
f z z

z e

z

 
  = = − +

  +
 

      
 (11) 

1. The back-propagation and the computation of the error gradient at each layer, by  

( )

'

L L f z

z A z


  
= − 
            

 (12) 

where L is the loss function 

2. Update weight and bias using the gradients from the backward pass. 

For the loss function, with the functions f(z) and its derivative f′(z) provided without explicit 

reference to target values or training data, the "loss function" will consider minimizing the 

integral of the square of the derivative f′(z). For example: 

( )
1

2

0

( ) '( )L g z f z dz= −
 ,        

 (13)     

and for the training data, we have: 

( )
5

2

5

( ) '( )L g z f z dz
−

= −
        

 (14) 

where g(z) is a target function (which may be zero if the aim is to minimize the derivative 

directly), and we can minimize 

( )
1

2

0

'( )L f z dz= 
         

 (15) 

since the goal is to have a convex function where the derivative is minimized in some sense 

over the interval. 
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For f(z) and f′(z), we will plot these functions across the interval z∈(0,1). The function f(z) 

consists of several parts including exponential, ReLU, Tanh, and LeakyReLU components 

which we will compute and plot using Python's matplotlib library. 

 

Fig 1. The graph above illustrates the behavior of f(z) and f′(z) across the interval z∈(0,1)  

f(z) shows a relatively smooth increase with some curvature due to the combination of 

exponential, ReLU, tanh, and ELU functions. 

f′(z) exhibits a different pattern, starting with higher values and decreasing, reflecting the 

change in slope of f(z) and the specific influence of the derivative terms, including the 

decreasing impact of the tanh2(z) term. 

The computed integrals for the square of the difference between f(z) and f′(z) over the 

specified intervals are: 

( )
1

2

0

( ) '( ) 0.639L f z f z dz= −
       

 (16) 

( )
5

2

5

( ) '( ) 9.19L f z f z dz
−

= −
       

 (17) 

These values provide a measure of the discrepancy between the function f(z) and its 

derivative f′(z) over their respective ranges, indicating how much f(z) deviates from its 

derivative in terms of integrated squared difference. This is used to assess model fit and 

consistency for the study’s contexts. 

 

 



Advanced Journal of Science, Technology and Engineering 

ISSN: 2997-5972  

Volume 5, Issue 1, 2025 (pp. 10-26) 

20  Article DOI: 10.52589/AJSTE-UOBYFV1B 

   DOI URL: https://doi.org/10.52589/AJSTE-UOBYFV1B 

www.abjournals.org 

RESULTS 

The following visualizations will be used to illustrate the results of the experiments: 

 

Fig. 2: The graph representing the linear combination of the five activation functions 

(Sigmoid, ReLU, Tanh, Leaky ReLU, and ELU) with the suggested parameters. 

The plot shows how the combination of these activation functions behaves across the input 

range 𝑧. This combined activation function introduces different behaviors in various regions 

of 𝑧, balancing the effects of the individual activations based on the linear coefficients. 

 

Fig. 3: The individual graphs for the five activation functions used in the linear combination 

Sigmoid: A smooth, "S"-shaped curve squashing input values to the range (0,1). 
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ReLU (Rectified Linear Unit): Outputs 0 for negative inputs and grows for positive inputs. 

Tanh: A symmetric function squashing input values to the range (−1,1). 

Leaky ReLU: Similar to ReLU, but allows a small, non-zero slope for negative inputs. 

ELU (Exponential Linear Unit): Outputs negative exponential values for negative inputs 

and grows for positive inputs. 

These graphs show the distinct behaviors of each activation function, which were Convex 

Hybrid Combination of in the previous graph. 

 
Fig. 4: Combined plot of the five activation functions (Sigmoid, ReLU, Tanh, Leaky ReLU, 

and ELU), showing how each function behaves across the input range 𝑧 

Observations from Plots  

Around 𝑧 = 0, all functions pass through or are close to the origin. This is expected since 

many activation functions output 0 or near-zero values for small inputs. Sigmoid and Tanh 

are similar in behavior near the origin, but Tanhis symmetric about zero, while Sigmoid stays 

positive. 

ReLU and Leaky ReLU start differentiating from others at 𝑧=0 by allowing positive outputs 

only for 𝑧>0. Leaky ReLU, however, has a small negative slope for 𝑧<0. ELU behaves 

similarly to Leaky ReLU for negative values but has a smoother transition at 𝑧=0 due to the 

exponential component. 

Behavior for Positive Inputs: ReLU, Leaky ReLU, and ELU grow for positive 𝑧, with 

similar behaviors after 𝑧 >1. ELU has an exponential rise for negative inputs but becomes 

linear like ReLU for positive ones. Sigmoid and Tanh both saturate (approach fixed values) 

for large positive inputs. Sigmoid saturates at 1, while Tanh saturates at +1. 

Activation Function Behaviors for Negative Inputs 

Different activation functions exhibit varied responses to negative inputs, each with unique 

implications for neural network performance. 
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ReLU (Rectified Linear Unit) 

ReLU produces zero output for all negative inputs, potentially leading to inactive or "dead" 

neurons in this range. 

Leaky ReLU and ELU (Exponential Linear Unit) 

These functions generate small negative outputs for negative inputs, maintaining neuron 

activity with minimal gradients. 

Sigmoid and Tanh 

Both functions saturate in negative ranges. Sigmoid approaches 0 asymptotically, while Tanh 

converges to -1. 

Implications of Varied Behaviors 

The diverse responses in the negative region offer distinct advantages: 

- Leaky ReLU and ELU's small gradients help mitigate the "dead neuron" problem. 

- Tanh's symmetric gradient may enhance the capture of features centered around zero. 

Combining Activation Functions 

Using multiple activation functions provides a blend of saturating and non-saturating 

behaviors: 

Saturating Functions - Sigmoid and Tanh saturate for large inputs, allowing the network to 

capture fine-grained features. 

Non-Saturating Functions - ReLU, Leaky ReLU, and ELU permit linear growth, enabling the 

network to detect large-scale trends. 

This combination allows the neural network to respond differently across various input 

ranges, facilitating the capture of both subtle details and broader patterns in the data. 

 
     Fig. 5. The Training and Validation Loss vs. Epochs for different activation functions, 

including Sigmoid, ReLU, Tanh, Leaky ReLU, ELU, and the combined activation function 
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Key Observations 

Training Loss: The training loss curves (solid lines) for all activation functions decrease over 

time as the models learn from the data. The combined activation function shows a lower 

starting loss and faster convergence compared to individual functions, indicating its 

effectiveness in learning efficiently. 

Validation Loss: The validation loss curves (dashed lines) show how well each model 

generalizes to unseen data. The combined activation function again exhibits faster 

convergence and a lower validation loss, suggesting better generalization performance 

compared to traditional activation functions. 

 

      

Fig. 6: The Activation Function Landscape (3D Plot) of the combined activation function. 

This plot visualizes how the output of the combined activation function behaves across a 

range of input values (X and Y). The combination of multiple activation functions creates a 

complex surface that represents the diverse non-linear behaviors of the underlying 

components (Sigmoid, ReLU, Tanh, Leaky ReLU, and ELU), influenced by their respective 

coefficients. 

 
Fig. 7. The Gradient Flow vs. Layer Depth for various activation functions (Sigmoid,ReLU, 

Tanh, Leaky ReLU, ELU, and the combined activation function) 
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Key Observations 

Sigmoid shows a sharp decay in gradient magnitude as layer depth increases, which is 

indicative of the vanishing gradient problem. 

ReLU and Leaky ReLU maintain better gradient flow compared to Sigmoid and Tanh, though 

ReLU still decays faster than Leaky ReLU due to its lack of gradient for negative inputs. 

ELU also shows better gradient retention compared to Sigmoid and Tanh, similar to ReLU 

but with smoother behavior. 

The combined activation function maintains the strongest gradient flow across layers, 

indicating that it effectively preserves gradient. The integration of activation functions 

enhances non-linear representation, hence augmenting the model's expressiveness. This 

enables the capture of more intricate patterns and correlations within the data, potentially 

enhancing performance, particularly in situations necessitating significant model flexibility 

and adaptability. 

The hybrid function combines saturating and non-saturating functions, offering advantages 

from both methodologies. It allows for customizable activation behavior, enhancing 

complexity and efficiency. This method also provides design freedom for neural networks, 

addressing challenges like vanishing gradients and inactive neurons. Furthermore, it may 

improve generalization by encompassing a wider range of data patterns during training, 

enhancing performance on unfamiliar data. 

 

LIMITATIONS AND CONSIDERATIONS 

The combined activation function approach has theoretical benefits but has limitations such 

as increased complexity, risk of overfitting, and complex hyperparameter optimization. 

Regularization methods and validation-centric training are needed to mitigate these risks 

while selecting suitable coefficients for the linear combination is complex. 

 

CONCLUSION 

The study illustrates that the integration of many activation functions—Sigmoid, ReLU, 

Tanh, Leaky ReLU, and ELU—into a singular, coupled activation function results in 

substantial enhancements in neural network efficacy. The integrated function demonstrates 

improved gradient propagation through deeper layers, accelerated convergence in training, 

and superior generalization on validation tasks. Significant findings encompass the 

alleviation of the vanishing gradient issue, the avoidance of inactive neurons, and the 

capacity to discern intricate patterns via enhanced expressivity. 

The findings indicate that neural networks utilizing mixed activation functions can learn more 

efficiently and effectively, especially in deep designs. This method offers a versatile and 

equitable framework for managing diverse input ranges and gradient behaviors, resulting in 

enhanced training dynamics and superior model performance across various machine-

learning applications. 
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