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ABSTRACT: Alloy design is the major driving force of next-

generation materials technology. Traditionally alloy design has 

relied on empirical rules and iterative trial-and-error 

experimentation, with the process of identifying novel 

compositions being time-consuming, costly, and inefficient. The 

landscape has recently been revolutionized by advances in 

machine learning (ML) that enable data-driven methods to 

improve the efficiency of sophisticated alloy design, selection, and 

property prediction. ML algorithms can learn effectively the 

relationships between composition, processing, structure, and 

properties from existing data, and thus guide the discovery of 

novel alloys with target properties. In this review, a survey of ML 

approaches employed in alloy design is provided, including 

supervised and unsupervised learning, feature engineering, and 

combination with physical modeling frameworks, such as 

CALPHAD. 
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INTRODUCTION 

Mechanical behavior in alloys is determined by their microstructures, and these in turn are 

determined by chemical composition and fabricating processes. Standard metallurgical-

property prediction therefore uses a two-step process. In step one, the microstructure is either 

simulated or predicted from processes/compositions, and in step two, the material property is 

related to the microstructure. Mingwei et al. (2021) in their work, Prediction of Mechanical 

Properties of Wrought Aluminum Alloys Using Feature Engineering Assisted Machine 

Learning Approach, pointed out that there were many empirical, physical metallurgy models 

that were used to simulate strengthening mechanisms and strength contributions. Many models 

have been put in place to ascertain the strengthening mechanism, such as representative models, 

which include the grain boundary effect described by the Hall-Petch relation, solid-solution 

strengthening described by the Fleischer equation, dislocation strengthening described by the 

Bailey-Hirsch relation, precipitation strengthening governed by the Orowan equation or 

dislocation shearing mechanism. These constitutive models quantitatively connect the 

microstructure of polycrystalline metallic alloys with a certain strengthening mechanism, 

which can be utilized to estimate the alloy strength by linear summation. 

Pure metals are rarely used in their unadulterated form because their inherent properties often 

do not align with the specific demands of a product. However, introducing even small amounts 

of a second or third element can drastically alter a metal's characteristics, leading to the creation 

of alloys with significantly enhanced properties. 

Industries such as aerospace, automotive, and structural engineering require materials that offer 

both excellent mechanical tolerance and low weight. As Rajat (2024) highlighted, the 

efficiency of well-designed alloys, particularly aluminum alloys, is evident in their extensive 

use in electric vehicle (EV) body structures, chassis, and battery housings. These alloys provide 

superior mechanical properties and their low weight contributes to reduced overall vehicle 

mass, leading to improved cost-effectiveness, enhanced corrosion resistance, and better 

acceleration. 

Aluminum alloys are second only to steels in their widespread use as structural metals. 

Aluminum's density is a mere 2.7 g/cm^3, roughly one-third that of steel (7.83 g/cm^3). The 

exceptional qualities of aluminum alloy, including its outstanding corrosion resistance, 

lightweight nature, high specific strength, good low temperature resistance, and ease of 

extrusion molding, have been widely acknowledged by researchers like Chen et al. (2022), 
Zhou et al. (2023), Zhou and Young (2018), Yan et al. (2022). These attributes make aluminum 

alloys a preferred material across diverse sectors, including explosion-proof applications, 

marine environments, bridge construction, large-span roofing, and curtain wall systems. The 

integration of machine learning (ML) with computational methods, such as calculation of phase 

diagram (CALPHAD) and density functional theory (DFT) has further advanced the 

development and understanding of these crucial materials. 
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LITERATURE REVIEW 

Overview of Aluminum Alloys 

Aluminum alloys can be broadly classified into two categories: wrought alloys and cast alloys, 

which are further divided into heat-treatable and non-heat-treatable groups. Common alloying 

elements include Cu, Mg, Si, Zn, Mn, and Li, which influence the alloy’s mechanical, thermal, 

and corrosion properties (Jinliang et al., 2019), whereas the notable series include: 

a. 2xxx: Al-Cu, high strength, used in aerospace 

b. 6xxx: Al-Mg-Si, good formability, widely used in automotive 

c. 7xxx: Al-Zn-Mg, very high strength, but more prone to corrosion 

Understanding the influence of composition and processing routes on final performance is a 

key challenge in optimizing these alloys; this is where machine learning has shown increasing 

promise. Liu et al. (2023) applied a genetic algorithm guided by ML property predictors to 

design Al-Mg-Si-Cu alloys with improved corrosion resistance. 

Applications of ML in Aluminum Alloy Development 

Machine Learning (ML) models depend heavily on the quality and quantity of data. Several 

studies by Yi et al. (2021) have constructed datasets from literature and experimental databases, 

CALPHAD-based Simulations (Thermo-Calc, JMatPro), and Open-source Repositories, while 

features typically include: Composition (%wt of elements), Processing Parameters (annealing 

temperature, aging time) and Microstructure Features (grain size, phase fractions). 

Traditionally, the design, selection, and development of aluminum alloys have relied so much 

on empirical, trial-and-error methods. This approach is problematic, as solidification defects 

like porosity and oxide films in aluminum castings can significantly reduce fatigue life by 

acting as crack initiation sites, leading to failure (Ahmad et al., 2020). To address these 

challenges, the deployment of ML prediction, leveraging available datasets and different 

machine learning algorithms, such as supervised and unsupervised learning, has become crucial 

for alloy selection and design (Gus, 2021; Huu-tai, 2022). 

According to the researcher of unsupervised learning and pattern recognition in alloy design, 

Bhat et al. (2024) emphasized that supervised learning algorithms are ideally adapted to 

predictive problems wherein historical data can be learned to predict future outcomes. The 

models learn from labeled datasets, wherein input features are associated with known outputs, 

such that material properties can be inferred from compositional and processing variables. This 

predictive capability is also very valuable in alloy design and nanomaterials. By systematic 

exploration of the correlation between input parameters and material properties, supervised ML 

models can guide the development of new materials with enhanced properties.  

Unsupervised learning, on the other hand, uncovers hidden patterns in data, regardless of the 

target properties, and can offer guidance on new research direction and investment well in 

advance of applications. Although unsupervised learning is used throughout materials 

informatics, this is a relatively untapped area of metal alloy design with huge potential to 

extract latent information contained within high dimensional combinatorial data. Examples are 

limited but include nanoalloys, high entropy alloys, and commercial Al and Mg alloys. 
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As the demand for advanced materials with tailored properties continues to grow, there is an 

increasing need for more efficient and predictive design strategies that can effectively narrow 

down candidate options prior to building structure property models. Traditional alloy 

development methods are often slow, costly, and resource intensive, prompting researchers to 

explore data-driven approaches as a means to overcome these limitations. 

In this context, unsupervised learning techniques have emerged as valuable tools for analyzing 

the complex, high-dimensional datasets commonly encountered in materials science without 

the requirement of pre-labelled property data. The primary goal of unsupervised learning is to 

detect patterns within unlabeled data, where physicochemical property information is not 

available. Key tasks in this domain include cluster analysis and dimensionality reduction (DR). 

Cluster analysis groups individual structures based on similarities or dissimilarities in a high-

dimensional space, using distance metrics to identify representative prototypes at cluster 

centroids. DR techniques, on the other hand, help to create simplified, lower-dimensional 

representations of data, either by reducing the number of features describing each alloy or by 

selecting the most influential alloys from a larger set. This not only streamlines model training 

but also enhances generalizability. 

These approaches enable researchers to reveal hidden trends, simplify complex datasets, and 

identify potential outliers that may represent novel or previously unexplored materials. Despite 

their potential, applications of unsupervised learning in alloy design remain relatively limited, 

highlighting significant opportunities for future research to address key challenges in this field. 

Supervised Learning Approaches 

Supervised learning is the most commonly used ML approach in alloy design. Algorithms such 

as linear regression, support vector machines (SVM), decision trees, random forests, and 

artificial neural networks (ANNs) are trained on labeled datasets to predict target properties. 

Yi et al. (2021), Wem et al. (2020) and Liu et al. (2021), emphasized in their research that 

regression models such as Random Forests, Support Vector Machines (SVM), Gradient 

Boosting Machines (GBM), and Deep Neural Networks (DNN) have been employed to predict 

properties such as Elongation, Fatigue life, Yield strength, (UTS) and Corrosion resistance. For 

example, Liu et al. (2021) used ensemble learning (XGBoost) to predict yield strength and 

elongation of 7xxx-series aluminum alloys, achieving high accuracy and interpretability 

through SHAP analysis. Numerous studies have demonstrated the successful prediction of 

mechanical properties of aluminum alloys using ML. Zhou et al. (2021) also used ensemble 

models to predict yield strength and elongation of 7xxx-series alloys with over 90% accuracy, 

while Yin et al. (2020) implemented a deep learning model to estimate hardness based on 

composition and heat treatment parameters. 

Udesh et al. (2020) highlighted that ML, as a data-driven method, can accurately predict 

optimal compositions from large datasets, attracting significant interest in novel alloy 

development due to its high accuracy. They emphasized the importance of identifying the 

desired combinations of mechanical properties when considering alloy development. Further 

research by Udesh et al. (2022) on ML-guided design of high-temperature NiTiHf shape 

memory alloys revealed that traditional alloy development is a time-consuming process with 

low accuracy, resulting in a 68% failure rate for NiTiHf alloys. The complexity of phase 

transformations and their sensitivity to composition have made traditional alloy design a 

laborious trial-and-error endeavor, especially for optimizing alloy composition and heat 
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treatment mechanisms in multicomponent aluminum alloys for improved mechanical 

properties. This process is both time-consuming and challenging to execute accurately and 

efficiently. 

In response to these limitations, the rapid advancements in computer technology have paved 

the way for computational alloy design approaches based on theoretical modeling and 

prediction. These methods can significantly accelerate the design of alloy compositions, heat 

treatment mechanisms, and even manufacturing processes. Yi et al. (2021) further supported 

this, concluding that the traditional trial-and-error method is highly inefficient for developing 

novel casting aluminum alloys. They demonstrated that computational thermodynamics (CT), 

particularly within the CALPHAD framework, data-driven ML techniques, and their 

synergistic combinations, are effective approaches for the design of casting aluminum alloys. 

Unsupervised Learning Approaches 

Ninad et al. (2024) in their research on unsupervised learning and pattern recognition in alloy 

design noted that, while unsupervised learning is yet in its early stages in the domain of alloy 

design, it offers new ways to investigate high-dimensional alloy data to uncover structures and 

correlations that are difficult to see using traditional tools. With unsupervised learning, 

researchers can identify specific subsets within alloy data sets that are more than just metal 

composition partitions, and help optimize and design new alloys with specified properties. 

Combining these data science strategies into alloy design speeds up the process of discovery 

and reveals new relationships that were not previously known, with profound effects on 

materials innovation in science. In this review, scientific progress and future applications to 

using unsupervised machine learning in alloy design are outlined. Unsupervised learning (UL) 

uses only the unlabeled feature set in order to learn unseen patterns in the data regardless of 

the properties. In contrast to SL, there are no studies with UL in the design of metallic alloys.  

 

METHODOLOGY 

Bhat et al. (2023), in their research of unsupervised machine learning discovery classes in 

aluminium alloys, highlighted that, Iterative label spreading (ILS), an unsupervised machine 

learning approach, was used to identify the different classes of Al alloys, drawing from a 

specifically curated dataset of 1154 Al alloys (including alloy composition and processing 

conditions). Using ILS, eight classes of Al alloys were identified based on a comprehensive 

feature set under two descriptors. Further, a decision tree classifier (DTC) was used to validate 

the separation of classes. The DTC was used to determine if the clusters are separable classes, 

using the cluster number as labels. 

The classifier obtained a test R2 score of 1 and a fivefold cross-validation score of 0.994 ± 

0.009. Table 1 shows the high precision, recall and f1-score of the DTC. The matrix, known as 

the “Confusion Matrix” in Figure 1, confirms that the clusters are classes. 
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Table 1: High precision, recall and f1-score of the DTC. 

 

Table X shows the high precision, recall and f1-score of the DTC. 

Fig. 1: Confusion matrix showing true positive, true negative, false positive and false 

negative of DTC classes. 

 

 



Advanced Journal of Science, Technology and Engineering   

ISSN: 2997-5972    

Volume 6, Issue 1, 2026 (pp. 1-11) 

7  Article DOI: 10.52589/AJSTE-P6RCXBWU 

   DOI URL: https://doi.org/10.52589/AJSTE-P6RCXBWU 

www.abjournals.org 

RESULT AND DISCUSSION 

This review shows that unsupervised clustering algorithms can be used to classify separable 

classes merely on the basis of similarity in features. Unsupervised ML was successfully used 

to detect the underlying hidden patterns and classify alloys, thereby respectively into classes. 

The prediction of the different classes of Al alloys from a dataset of 1154 Al alloys included 

alloy composition and processing parameters. Through the use of the ILS technique, eight 

distinct clusters of Al alloys were obtained using the feature set of 34 dimensions. By using a 

DTC, these clusters were recognizable classes. It was discovered that 11 features were 

responsible for classifying classes using recursive feature elimination with a DTC. The feature 

importance profiles recognized processing conditions and key combinations of major alloying 

factors as largely separating the eight classes. The approach was shown to recover Al-alloy 

class information that is understandable and which well discriminated some of the important 

commercial alloy classes in a rational manner. Based on the work here, the classes can serve 

as a point of reference for rational, data-considerate Al-alloy design in future models that focus 

on optimizing alloy design using ML. 

One such positive affirmation is the study of Zhang et al. (2019). Unsupervised discovery of 

solid-state lithium-ion conductors which positively asserted that, unlike supervised learning 

models, which require nicely labeled training data, unsupervised learning is readily applicable 

to large datasets regardless of whether any properties or labels exist. As a technique to deduce 

from data characteristics without specific labeled attributes, unsupervised learning has been 

applied in materials science for feature extraction, pattern recognition, clustering, and phase 

mapping. Utilizing unsupervised learning for the direct discovery of new materials with 

optimized properties has been rarely explored. Unsupervised learning, through training across 

a broad range of materials, can identify boundaries between good and poor examples, selecting 

out candidates that look like good examples, and later be verified by more accurate first-

principles calculations. In their study, a colorful method was employed to illustrate the outline 

of the unsupervised discovery of solid-state Li-ion conductors (SSLCs) materials, as shown in 

Fig. 2.  

For training the unsupervised model, a quantitative representation of the complex materials 

structure (Fig. 2a) is required as input. Instead of using a set of hand-chosen features, digital 

diffraction patterns of the crystal structure were used. Specifically, a representation for each 

crystal structure was built up based on Bragg's law to convert the three-dimensional periodic 

crystal lattice to a set of X-ray diffraction intensities at a specified set of 2θ values. Here, 

considering only the anion lattice of the crystal structure, based on the premise that anion 

arrangement and Li+-anion interactions have a strong effect on Li sites, diffusion channels, and 

the energy landscape of Li migration, the anionic lattice was pinned to S anion and resized to 

the same atomistic volume, so that the representation was invariant to lattice parameter or the 

chemical constituent. The resulting representation, termed modified X-ray diffraction 

(mXRD), is uniquely determined for every anion lattice (Fig. 2b), fully encoding the anionic 

crystal structure information. Here, we performed our unsupervised discovery over 2986 

compounds that contain lithium but not transition metals. Since some compounds have the 

same structure, one representative structure was selected. 528 representative anionic structures 

and their mXRDs were conducted for the unsupervised learning. 
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Fig. 2a 

 

Fig. 2b 

 

Integration of ML with computational methods (e.g., CALPHAD, DFT). 

ML models are being used to complement DFT and CALPHAD simulations. Seko et al. (2019) 

demonstrated the use of ML to accelerate DFT calculations in high-throughput alloy screening. 

Huang et al. (2021) used ML to interpolate CALPHAD results across unexplored 

compositions. 

Yi et al. (2021) in their work on boosting for concept design of casting aluminum alloys driven 

by combining computational thermodynamics and machine learning techniques deduced that 

Computational Thermodynamics (CT), machine learning, and hybrid approaches have been 

employed in alloy development. CT, which integrates phase equilibrium and thermochemistry 

through computational methods, has advanced to include kinetic simulations alongside 

thermodynamic calculations. This evolution has made CT a robust tool for material design. It 
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accurately predicts factors crucial to casting aluminum alloys, such as castability, cracking 

susceptibility, grain refinement, microstructure modifications, and fundamental physical 

properties. These predictions enable the optimization of alloy composition, heat treatment 

processes, and manufacturing techniques through a multi-objective design strategy. 

The CALPHAD technique, utilizing accurate thermodynamic databases within the CT 

approach, has proven effective in predicting critical factors for the as-cast microstructure of 

alloys. These factors include castability, crack susceptibility index, and growth restriction 

factor, all of which are vital for efficient alloy design. Furthermore, CT-derived property 

diagrams have facilitated the optimization of solid solution and aging temperatures for specific 

casting alloys, such as the Sc-enhanced Al-Si-Mg series. The figure below shows the strategic 

workflow for alloy design approach driven by computational thermodynamics as a tool for Yi 

et al. (2021)’s success. 

Fig. 3: Strategic workflow for alloy design approach driven by computational 

thermodynamics. 

 

Result and Discussion of the Synergistic Approaches: Combining CT and ML 

This review strongly advocates for integrating CT and ML to quantitatively establish the 

"Composition, Process, Microstructure and Properties" relationships in casting aluminum 

alloys. Additionally, using ML to train a "Microstructure-Properties" matrix could offer deeper 

insights into the strengthening and toughening mechanisms of casting aluminum alloys. 

Ultimately, the work concludes that combining CT and ML significantly accelerates the 

conceptual design of cast aluminum alloys for diverse industrial applications. 

ML-Guided Phase Design for High-Entropy Alloys 

Ziqing et al. (2019)’s research on ML-guided phase design for high-entropy alloys (HEAs) 

demonstrated that Artificial Neural Networks (ANNs), one-dimensional Convolutional Neural 

Networks (CNNs), and Support Vector Machines (SVMs) can effectively evaluate existing 

phase design rules and explore new ones. These three ML algorithms are well-suited for 

supervised classification problems. ANNs, for instance, utilize a feed-forward structure with 

input, hidden, and output layers. 

In addition, ML models can predict phase stability and microstructure evolution, as confirmed 

by Chen et al. (2020), combined ML with CALPHAD data, to forecast phase diagrams and 
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solidification behavior. Another literature by Zhang et al. (2022) trained CNNs to classify grain 

morphology from microstructure images of aluminum-silicon alloys. 

Experimental verification of ML modeling, including casting, melt spinning, and co-sputtering, 

for a new Fe-Cr-Ni-Zr-Cu HEA system generally aligned with ML predictions. However, the 

experiments also revealed that the phases in the ML-designed HEAs were cooling rate 

dependent. This observation is sensible, as amorphous (AM) phases are metastable, and even 

solid solution (SS) phases in some HEAs can be cooling-rate sensitive. 

 

CONCLUSION 

Machine learning has emerged as a cornerstone technology in the modern development of 

aluminum alloys, enabling rapid prediction, optimization, and discovery. This review 

encapsulates the vast progress in ML-assisted design, outlines the key challenges, and 

highlights the importance of interdisciplinary collaboration in advancing this domain. As tools 

and datasets evolve, ML promises to unlock next-generation lightweight, high-performance 

alloys tailored for structural, aerospace, and sustainable applications. 
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