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ABSTRACT: Alloy design is the major driving force of next-
generation materials technology. Traditionally alloy design has
relied on empirical rules and iterative trial-and-error
experimentation, with the process of identifying novel
compositions being time-consuming, costly, and inefficient. The
landscape has recently been revolutionized by advances in
machine learning (ML) that enable data-driven methods to
improve the efficiency of sophisticated alloy design, selection, and
property prediction. ML algorithms can learn effectively the
relationships between composition, processing, structure, and
properties from existing data, and thus guide the discovery of
novel alloys with target properties. In this review, a survey of ML
approaches employed in alloy design is provided, including
supervised and unsupervised learning, feature engineering, and
combination with physical modeling frameworks, such as
CALPHAD.
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INTRODUCTION

Mechanical behavior in alloys is determined by their microstructures, and these in turn are
determined by chemical composition and fabricating processes. Standard metallurgical-
property prediction therefore uses a two-step process. In step one, the microstructure is either
simulated or predicted from processes/compositions, and in step two, the material property is
related to the microstructure. Mingwei et al. (2021) in their work, Prediction of Mechanical
Properties of Wrought Aluminum Alloys Using Feature Engineering Assisted Machine
Learning Approach, pointed out that there were many empirical, physical metallurgy models
that were used to simulate strengthening mechanisms and strength contributions. Many models
have been put in place to ascertain the strengthening mechanism, such as representative models,
which include the grain boundary effect described by the Hall-Petch relation, solid-solution
strengthening described by the Fleischer equation, dislocation strengthening described by the
Bailey-Hirsch relation, precipitation strengthening governed by the Orowan equation or
dislocation shearing mechanism. These constitutive models quantitatively connect the
microstructure of polycrystalline metallic alloys with a certain strengthening mechanism,
which can be utilized to estimate the alloy strength by linear summation.

Pure metals are rarely used in their unadulterated form because their inherent properties often
do not align with the specific demands of a product. However, introducing even small amounts
of'a second or third element can drastically alter a metal's characteristics, leading to the creation
of alloys with significantly enhanced properties.

Industries such as aerospace, automotive, and structural engineering require materials that offer
both excellent mechanical tolerance and low weight. As Rajat (2024) highlighted, the
efficiency of well-designed alloys, particularly aluminum alloys, is evident in their extensive
use in electric vehicle (EV) body structures, chassis, and battery housings. These alloys provide
superior mechanical properties and their low weight contributes to reduced overall vehicle
mass, leading to improved cost-effectiveness, enhanced corrosion resistance, and better
acceleration.

Aluminum alloys are second only to steels in their widespread use as structural metals.
Aluminum's density is a mere 2.7 g/cm”3, roughly one-third that of steel (7.83 g/cm”3). The
exceptional qualities of aluminum alloy, including its outstanding corrosion resistance,
lightweight nature, high specific strength, good low temperature resistance, and ease of
extrusion molding, have been widely acknowledged by researchers like Chen et al. (2022),
Zhou et al. (2023), Zhou and Young (2018), Yan et al. (2022). These attributes make aluminum
alloys a preferred material across diverse sectors, including explosion-proof applications,
marine environments, bridge construction, large-span roofing, and curtain wall systems. The
integration of machine learning (ML) with computational methods, such as calculation of phase
diagram (CALPHAD) and density functional theory (DFT) has further advanced the
development and understanding of these crucial materials.
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LITERATURE REVIEW
Overview of Aluminum Alloys

Aluminum alloys can be broadly classified into two categories: wrought alloys and cast alloys,
which are further divided into heat-treatable and non-heat-treatable groups. Common alloying
elements include Cu, Mg, Si, Zn, Mn, and Li, which influence the alloy’s mechanical, thermal,
and corrosion properties (Jinliang et al., 2019), whereas the notable series include:

a. 2xxx: Al-Cu, high strength, used in aerospace
b. 6xxx: Al-Mg-Si, good formability, widely used in automotive
c. 7xxx: Al-Zn-Mg, very high strength, but more prone to corrosion

Understanding the influence of composition and processing routes on final performance is a
key challenge in optimizing these alloys; this is where machine learning has shown increasing
promise. Liu ef al. (2023) applied a genetic algorithm guided by ML property predictors to
design Al-Mg-Si-Cu alloys with improved corrosion resistance.

Applications of ML in Aluminum Alloy Development

Machine Learning (ML) models depend heavily on the quality and quantity of data. Several
studies by Yi et al. (2021) have constructed datasets from literature and experimental databases,
CALPHAD-based Simulations (Thermo-Calc, JMatPro), and Open-source Repositories, while
features typically include: Composition (%wt of elements), Processing Parameters (annealing
temperature, aging time) and Microstructure Features (grain size, phase fractions).
Traditionally, the design, selection, and development of aluminum alloys have relied so much
on empirical, trial-and-error methods. This approach is problematic, as solidification defects
like porosity and oxide films in aluminum castings can significantly reduce fatigue life by
acting as crack initiation sites, leading to failure (Ahmad et al., 2020). To address these
challenges, the deployment of ML prediction, leveraging available datasets and different
machine learning algorithms, such as supervised and unsupervised learning, has become crucial
for alloy selection and design (Gus, 2021; Huu-tai, 2022).

According to the researcher of unsupervised learning and pattern recognition in alloy design,
Bhat et al. (2024) emphasized that supervised learning algorithms are ideally adapted to
predictive problems wherein historical data can be learned to predict future outcomes. The
models learn from labeled datasets, wherein input features are associated with known outputs,
such that material properties can be inferred from compositional and processing variables. This
predictive capability is also very valuable in alloy design and nanomaterials. By systematic
exploration of the correlation between input parameters and material properties, supervised ML
models can guide the development of new materials with enhanced properties.

Unsupervised learning, on the other hand, uncovers hidden patterns in data, regardless of the
target properties, and can offer guidance on new research direction and investment well in
advance of applications. Although unsupervised learning is used throughout materials
informatics, this is a relatively untapped area of metal alloy design with huge potential to
extract latent information contained within high dimensional combinatorial data. Examples are
limited but include nanoalloys, high entropy alloys, and commercial Al and Mg alloys.
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As the demand for advanced materials with tailored properties continues to grow, there is an
increasing need for more efficient and predictive design strategies that can effectively narrow
down candidate options prior to building structure property models. Traditional alloy
development methods are often slow, costly, and resource intensive, prompting researchers to
explore data-driven approaches as a means to overcome these limitations.

In this context, unsupervised learning techniques have emerged as valuable tools for analyzing
the complex, high-dimensional datasets commonly encountered in materials science without
the requirement of pre-labelled property data. The primary goal of unsupervised learning is to
detect patterns within unlabeled data, where physicochemical property information is not
available. Key tasks in this domain include cluster analysis and dimensionality reduction (DR).
Cluster analysis groups individual structures based on similarities or dissimilarities in a high-
dimensional space, using distance metrics to identify representative prototypes at cluster
centroids. DR techniques, on the other hand, help to create simplified, lower-dimensional
representations of data, either by reducing the number of features describing each alloy or by
selecting the most influential alloys from a larger set. This not only streamlines model training
but also enhances generalizability.

These approaches enable researchers to reveal hidden trends, simplify complex datasets, and
identify potential outliers that may represent novel or previously unexplored materials. Despite
their potential, applications of unsupervised learning in alloy design remain relatively limited,
highlighting significant opportunities for future research to address key challenges in this field.

Supervised Learning Approaches

Supervised learning is the most commonly used ML approach in alloy design. Algorithms such
as linear regression, support vector machines (SVM), decision trees, random forests, and
artificial neural networks (ANNSs) are trained on labeled datasets to predict target properties.

Yi et al. (2021), Wem et al. (2020) and Liu ef al. (2021), emphasized in their research that
regression models such as Random Forests, Support Vector Machines (SVM), Gradient
Boosting Machines (GBM), and Deep Neural Networks (DNN) have been employed to predict
properties such as Elongation, Fatigue life, Yield strength, (UTS) and Corrosion resistance. For
example, Liu et al. (2021) used ensemble learning (XGBoost) to predict yield strength and
elongation of 7xxx-series aluminum alloys, achieving high accuracy and interpretability
through SHAP analysis. Numerous studies have demonstrated the successful prediction of
mechanical properties of aluminum alloys using ML. Zhou et al. (2021) also used ensemble
models to predict yield strength and elongation of 7xxx-series alloys with over 90% accuracy,
while Yin ef al. (2020) implemented a deep learning model to estimate hardness based on
composition and heat treatment parameters.

Udesh et al. (2020) highlighted that ML, as a data-driven method, can accurately predict
optimal compositions from large datasets, attracting significant interest in novel alloy
development due to its high accuracy. They emphasized the importance of identifying the
desired combinations of mechanical properties when considering alloy development. Further
research by Udesh ef al. (2022) on ML-guided design of high-temperature NiTiHf shape
memory alloys revealed that traditional alloy development is a time-consuming process with
low accuracy, resulting in a 68% failure rate for NiTiHf alloys. The complexity of phase
transformations and their sensitivity to composition have made traditional alloy design a
laborious trial-and-error endeavor, especially for optimizing alloy composition and heat
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treatment mechanisms in multicomponent aluminum alloys for improved mechanical
properties. This process is both time-consuming and challenging to execute accurately and
efficiently.

In response to these limitations, the rapid advancements in computer technology have paved
the way for computational alloy design approaches based on theoretical modeling and
prediction. These methods can significantly accelerate the design of alloy compositions, heat
treatment mechanisms, and even manufacturing processes. Yi et al. (2021) further supported
this, concluding that the traditional trial-and-error method is highly inefficient for developing
novel casting aluminum alloys. They demonstrated that computational thermodynamics (CT),
particularly within the CALPHAD framework, data-driven ML techniques, and their
synergistic combinations, are effective approaches for the design of casting aluminum alloys.

Unsupervised Learning Approaches

Ninad ef al. (2024) in their research on unsupervised learning and pattern recognition in alloy
design noted that, while unsupervised learning is yet in its early stages in the domain of alloy
design, it offers new ways to investigate high-dimensional alloy data to uncover structures and
correlations that are difficult to see using traditional tools. With unsupervised learning,
researchers can identify specific subsets within alloy data sets that are more than just metal
composition partitions, and help optimize and design new alloys with specified properties.
Combining these data science strategies into alloy design speeds up the process of discovery
and reveals new relationships that were not previously known, with profound effects on
materials innovation in science. In this review, scientific progress and future applications to
using unsupervised machine learning in alloy design are outlined. Unsupervised learning (UL)
uses only the unlabeled feature set in order to learn unseen patterns in the data regardless of
the properties. In contrast to SL, there are no studies with UL in the design of metallic alloys.

METHODOLOGY

Bhat ef al. (2023), in their research of unsupervised machine learning discovery classes in
aluminium alloys, highlighted that, Iterative label spreading (ILS), an unsupervised machine
learning approach, was used to identify the different classes of Al alloys, drawing from a
specifically curated dataset of 1154 Al alloys (including alloy composition and processing
conditions). Using ILS, eight classes of Al alloys were identified based on a comprehensive
feature set under two descriptors. Further, a decision tree classifier (DTC) was used to validate
the separation of classes. The DTC was used to determine if the clusters are separable classes,
using the cluster number as labels.

The classifier obtained a test R2 score of 1 and a fivefold cross-validation score of 0.994 +
0.009. Table 1 shows the high precision, recall and f1-score of the DTC. The matrix, known as
the “Confusion Matrix” in Figure 1, confirms that the clusters are classes.
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Table 1: High precision, recall and f1-score of the DTC.

precision recall F1-score

(lass 1 1.0 1.0 1.0
. (Iass 3 ___________________________________________ 10 ________________________________________________ 10 ___________________________________________ 10 _________
. (Iass 5 ___________________________________________ 10 ______________________________________________ 10 ____________________________________________ 10 _________

Table X shows the high precision, recall and f1-score of the DTC.

Fig. 1: Confusion matrix showing true positive, true negative, false positive and false
negative of DTC classes.
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RESULT AND DISCUSSION

This review shows that unsupervised clustering algorithms can be used to classify separable
classes merely on the basis of similarity in features. Unsupervised ML was successfully used
to detect the underlying hidden patterns and classify alloys, thereby respectively into classes.
The prediction of the different classes of Al alloys from a dataset of 1154 Al alloys included
alloy composition and processing parameters. Through the use of the ILS technique, eight
distinct clusters of Al alloys were obtained using the feature set of 34 dimensions. By using a
DTC, these clusters were recognizable classes. It was discovered that 11 features were
responsible for classifying classes using recursive feature elimination with a DTC. The feature
importance profiles recognized processing conditions and key combinations of major alloying
factors as largely separating the eight classes. The approach was shown to recover Al-alloy
class information that is understandable and which well discriminated some of the important
commercial alloy classes in a rational manner. Based on the work here, the classes can serve
as a point of reference for rational, data-considerate Al-alloy design in future models that focus
on optimizing alloy design using ML.

One such positive affirmation is the study of Zhang et al. (2019). Unsupervised discovery of
solid-state lithium-ion conductors which positively asserted that, unlike supervised learning
models, which require nicely labeled training data, unsupervised learning is readily applicable
to large datasets regardless of whether any properties or labels exist. As a technique to deduce
from data characteristics without specific labeled attributes, unsupervised learning has been
applied in materials science for feature extraction, pattern recognition, clustering, and phase
mapping. Utilizing unsupervised learning for the direct discovery of new materials with
optimized properties has been rarely explored. Unsupervised learning, through training across
a broad range of materials, can identify boundaries between good and poor examples, selecting
out candidates that look like good examples, and later be verified by more accurate first-
principles calculations. In their study, a colorful method was employed to illustrate the outline
of the unsupervised discovery of solid-state Li-ion conductors (SSLCs) materials, as shown in
Fig. 2.

For training the unsupervised model, a quantitative representation of the complex materials
structure (Fig. 2a) is required as input. Instead of using a set of hand-chosen features, digital
diffraction patterns of the crystal structure were used. Specifically, a representation for each
crystal structure was built up based on Bragg's law to convert the three-dimensional periodic
crystal lattice to a set of X-ray diffraction intensities at a specified set of 26 values. Here,
considering only the anion lattice of the crystal structure, based on the premise that anion
arrangement and Li+-anion interactions have a strong effect on Li sites, diffusion channels, and
the energy landscape of Li migration, the anionic lattice was pinned to S anion and resized to
the same atomistic volume, so that the representation was invariant to lattice parameter or the
chemical constituent. The resulting representation, termed modified X-ray diffraction
(mXRD), is uniquely determined for every anion lattice (Fig. 2b), fully encoding the anionic
crystal structure information. Here, we performed our unsupervised discovery over 2986
compounds that contain lithium but not transition metals. Since some compounds have the
same structure, one representative structure was selected. 528 representative anionic structures
and their mXRDs were conducted for the unsupervised learning.
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Integration of ML with computational methods (e.g., CALPHAD, DFT).

ML models are being used to complement DFT and CALPHAD simulations. Seko et al. (2019)
demonstrated the use of ML to accelerate DFT calculations in high-throughput alloy screening.
Huang et al. (2021) used ML to interpolate CALPHAD results across unexplored
compositions.

Yiet al. (2021) in their work on boosting for concept design of casting aluminum alloys driven
by combining computational thermodynamics and machine learning techniques deduced that
Computational Thermodynamics (CT), machine learning, and hybrid approaches have been
employed in alloy development. CT, which integrates phase equilibrium and thermochemistry
through computational methods, has advanced to include kinetic simulations alongside
thermodynamic calculations. This evolution has made CT a robust tool for material design. It
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accurately predicts factors crucial to casting aluminum alloys, such as castability, cracking
susceptibility, grain refinement, microstructure modifications, and fundamental physical
properties. These predictions enable the optimization of alloy composition, heat treatment
processes, and manufacturing techniques through a multi-objective design strategy.

The CALPHAD technique, utilizing accurate thermodynamic databases within the CT
approach, has proven effective in predicting critical factors for the as-cast microstructure of
alloys. These factors include castability, crack susceptibility index, and growth restriction
factor, all of which are vital for efficient alloy design. Furthermore, CT-derived property
diagrams have facilitated the optimization of solid solution and aging temperatures for specific
casting alloys, such as the Sc-enhanced Al-Si-Mg series. The figure below shows the strategic
workflow for alloy design approach driven by computational thermodynamics as a tool for Yi
et al. (2021)’s success.

Fig. 3: Strategic workflow for alloy design approach driven by computational
thermodynamics.
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Result and Discussion of the Synergistic Approaches: Combining CT and ML

This review strongly advocates for integrating CT and ML to quantitatively establish the
"Composition, Process, Microstructure and Properties" relationships in casting aluminum
alloys. Additionally, using ML to train a "Microstructure-Properties" matrix could offer deeper
insights into the strengthening and toughening mechanisms of casting aluminum alloys.
Ultimately, the work concludes that combining CT and ML significantly accelerates the
conceptual design of cast aluminum alloys for diverse industrial applications.

ML-Guided Phase Design for High-Entropy Alloys

Ziqing et al. (2019)’s research on ML-guided phase design for high-entropy alloys (HEAs)
demonstrated that Artificial Neural Networks (ANNs), one-dimensional Convolutional Neural
Networks (CNNs), and Support Vector Machines (SVMs) can effectively evaluate existing
phase design rules and explore new ones. These three ML algorithms are well-suited for
supervised classification problems. ANNs, for instance, utilize a feed-forward structure with
input, hidden, and output layers.

In addition, ML models can predict phase stability and microstructure evolution, as confirmed
by Chen et al. (2020), combined ML with CALPHAD data, to forecast phase diagrams and
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solidification behavior. Another literature by Zhang et al. (2022) trained CNNss to classify grain
morphology from microstructure images of aluminum-silicon alloys.

Experimental verification of ML modeling, including casting, melt spinning, and co-sputtering,
for a new Fe-Cr-Ni-Zr-Cu HEA system generally aligned with ML predictions. However, the
experiments also revealed that the phases in the ML-designed HEAs were cooling rate
dependent. This observation is sensible, as amorphous (AM) phases are metastable, and even
solid solution (SS) phases in some HEAs can be cooling-rate sensitive.

CONCLUSION

Machine learning has emerged as a cornerstone technology in the modern development of
aluminum alloys, enabling rapid prediction, optimization, and discovery. This review
encapsulates the vast progress in ML-assisted design, outlines the key challenges, and
highlights the importance of interdisciplinary collaboration in advancing this domain. As tools
and datasets evolve, ML promises to unlock next-generation lightweight, high-performance
alloys tailored for structural, aecrospace, and sustainable applications.
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