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ABSTRACT: In this paper, the determination of eccentric 

anomaly (E) for Kepler’s satellite orbit using Perturbation-Based 

Seeded Secant (PBSS) iteration algorithm is presented. The 

solution is meant for Kepler’s orbit with the value of eccentricity 

(e) in the range 0 ≤ e ≤ 1. Such orbits are either circular or 

elliptical. The demonstration of the applicability of the PBSS  

iteration is presented using sample numerical examples with 

different values of mean anomaly (M) and eccentricity (e). The 

summary of the results of E for  M = 30° and e in the range 0.001 

≤ e ≤1 showed that the convergence cycle (n) increases as e 

increases. Particularly, n increased from 2 at e = 0.01 to n = 8 at 

e =1. The implication is that it takes more iterations to arrive at 

the value of E with the desired accuracy or error performance 

(which in this case is set to 10−12).  Another implication is that a 

good choice of the initial value of E is essential especially as the 

value of e increases. As such, effort should be made to develop a 

means of estimating the initial value of E which will reduce the 

convergence cycle for higher values of e.   
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INTRODUCTION  

The Kepler’s orbital motion equation for eccentric anomaly (E)  is a transcendental equation 

which requires iterative approaches for its solution [1,2,3,4,5,6,7]. In this paper a modified 

version of the classical secant iteration scheme is developed and applied in the determination 

of the eccentric anomaly (E) of Kepler’s orbit with value of eccentricity (e) in the range 0 ≤ e 

≤ 1 [8,9,10,11]. The modified secant presented in this paper is referred to Perturbation-Based 

Seeded Secant (PBSS) iteration scheme.  

Notably, the PBSS uses a single initial guess value of E along with any chosen fraction of the 

initial guess value of E as the perturbation value to perform the secant iteration. If 𝐸0 is the 

chosen initial single guess value of E, then the perturbation value, 𝛼 of 0.01 can be used to 

obtained the second initial guess root, 𝐸1 where 𝐸1 is (1.01)𝐸0, that is ((1 +  𝛼) 𝐸0). In this 

way, the user is only required to provide a single initial guess value of 𝐸0 and then the second 

required root is A variant of 𝐸0. This makes it easier to employ the seeded secant in the solution 

of transcendental equations. 

In this paper, the algorithm for the PBSS iteration is presented. The algorithm is tailored to the 

solution of Kepler's orbital motion transcendental equation for eccentric anomaly (E) . Some 

numerical examples are presented and the performance of the algorithm is examined in terms 

of its convergence cycle for different parameter configurations of the Kepler’s transcendental 

equation for eccentric anomaly. 

 

METHODOLOGY 

The eccentric anomaly (E) of Kepler’s satellite orbit can be determined from the knowledge 

of eccentricity (e) and the mean anomaly (M) using the analytical expression 

[12,13,14,15,16]; 

  𝐸 = 𝑀 + 𝑒(𝑠𝑖𝑛 (𝐸))   (1) 

There is no closed-form solution to the expression for solving E. As such numerical iteration 

approach can be used. In this paper, the Perturbation-Based Seeded Secant (PBSS) iteration 

method is used. The PBSS uses a single initial value of E  and a perturbation value (𝛼) of 0.01 

(E) to iteratively determine the value of E based on the PBSS algorithm. For the seeded secant, 

E can be expressed in terms of iteration cycle number, x as follows;  

  𝐸𝑥  = 𝑀 + 𝑒(𝑠𝑖𝑛 (𝐸𝑥))   (2) 

  𝐸𝑥𝛼 = 𝐸𝑥(1+𝛼) + 𝑒(𝑠𝑖𝑛 (𝐸𝑥(1+𝛼)))   (3) 

Hence; 

   𝐸𝑥𝛼 = (1 + 𝛼)𝐸𝑥 = 𝑀 + 𝑒(𝑠𝑖𝑛 𝑠𝑖𝑛 ((1 + 𝛼)𝐸𝑥) )    (4) 

In the first cycle, E =M , hence, at x=0,  

  𝐸0  = 𝑀 + 𝑒(𝑠𝑖𝑛 (𝐸0)) = 𝑀 + 𝑒(𝑠𝑖𝑛 (𝑀))   (5) 
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   𝐸0𝛼 = (1 + 𝛼)𝐸0  = 𝑀 + 𝑒(𝑠𝑖𝑛 𝑠𝑖𝑛 ((1 + 𝛼)𝐸0) )    (6) 

For 𝛼 = 0.01,   

   𝐸0𝛼 = 1.01𝐸0) = 𝑀 + 𝑒(𝑠𝑖𝑛 𝑠𝑖𝑛 (1.01𝐸0) )    (7) 

 

The PBSS algorithm is stated as follows: 

Step 1:  

Step 1.1: :  𝐸𝑜 = 𝑀    

Step 1.2:   α = 0.01 

Step 1.3:   Accuracy , 𝜀 = 10−12  

Step 1.4: Input: Maximum Iterations Cycle, n 

Step 2: For x = 0  To  n  Step 1 do: 

Step 3:     

Step 3.1: Calculate   𝑓(𝐸𝑥) = 𝑀 + 𝑒(𝑠𝑖𝑛 (𝐸𝑥)) 

Step 3.2: Calculate  𝑓(𝐸𝑥𝛼) = (1 + 𝛼)𝐸𝑥 = 𝑀 + 𝑒(𝑠𝑖𝑛 𝑠𝑖𝑛 ((1 + 𝛼)𝐸𝑥) ) 

Step 4:     𝐸𝑥+1 =   𝐸𝑥 − 𝑓(𝐸𝑥 ) (
 𝛼

 𝑓(𝐸𝑥𝛼) − 𝑓(𝑥)
)  

Step 5:      

Step 5.1:    If |𝐸𝑥+1 − 𝐸𝑥| <  𝜀  Then   

Step 5.1.1:    Print   𝐸𝑥+1 

Step 5.1.2:    Go to Step 8; 

Step 5.3: EndIf 

Step 6: Next x  

Step 7: Print   “Maximum Iteration Cycle Exceeded” 

Step 8  Stop 
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RESULTS AND DISCUSSION  

Demonstration of the applicability of the PBSS algorithm is presented using sample numerical 

examples with different values of M and e. The results of E for M = 30° and e =0.01 are given 

in Table 1, the results of E for M = 30° and e =0.1 are given in Table 2 and the results of E for  

M = 30° and e = 1 are given in Table 3. The summary of the results of E for  M = 30° and e in 

the range 0.001 ≤ e ≤1 are given in Table 3. The results show that the convergence cycle number 

(n) increases as e increases. Particularly, n increased from 2 at e = 0.01 to n = 8 at e =1. The 

implication is that it takes more iterations to arrive at the value of E with the desired accuracy 

or error performance (which in this case is set to 10−12).   

Another implication is that a good choice of the initial value is essential especially as the value 

of e increases. As such, effort should be made to develop a means of estimating the initial value 

of E which will reduce the convergence cycle for higher values of e. 

Table 1   The results of E for  M = 30° and e =0.01 

Cycle  Ex Exα f(Ex) f(Exα) M (Radian ) 

0 0.523599 0.524122 -5.00000E-03 -4.48094E-03 0.523598776 

1 0.528642 0.529171 5.71775E-08 5.24136E-04 M (Degree ) 

2 0.528642 0.529171 7.69385E-14 5.24078E-04 30 

3 0.528642 0.529171 0.00000E+00 5.24078E-04 e 

4 0.528642 0.529171 0.00000E+00 5.24078E-04 0.01 

5 0.528642 0.529171 0.00000E+00 5.24078E-04 E (Radian ) 

6 0.528642 0.529171 0.00000E+00 5.24078E-04 0.528642391 

7 0.528642 0.529171 0.00000E+00 5.24078E-04 E (Degree ) 

8 0.528642 0.529171 0.00000E+00 5.24078E-04 30.28897786 

9 0.528642 0.529171 0.00000E+00 5.24078E-04 Convergence Cycle  

10 0.528642 0.529171 0.00000E+00 5.24078E-04 2 

11 0.528642 0.529171 0.00000E+00 5.24078E-04 

Error At Convergence 

(radian) 

12 0.528642 0.529171 0.00000E+00 5.24078E-04 7.69385E-14 

 

Table 2   The results of E for  M = 30° and e =0.1 

Cycle  Ex Exα f(Ex) f(Exα) M (Radian ) 

0 0.523599 0.524122 -5.00000E-02 -4.95217E-02 0.523598776 

1 0.578339 0.578917 7.65431E-05 6.06462E-04 M (Degree ) 

2 0.578255 0.578833 1.51158E-09 5.29842E-04 30 

3 0.578255 0.578833 2.60902E-14 5.29840E-04 e 

4 0.578255 0.578833 0.00000E+00 5.29840E-04 0.1 

5 0.578255 0.578833 0.00000E+00 5.29840E-04 E (Radian ) 

6 0.578255 0.578833 0.00000E+00 5.29840E-04 0.578255134 

7 0.578255 0.578833 0.00000E+00 5.29840E-04 E (Degree ) 
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8 0.578255 0.578833 0.00000E+00 5.29840E-04 33.13157869 

9 0.578255 0.578833 0.00000E+00 5.29840E-04 Convergence Cycle  

10 0.578255 0.578833 0.00000E+00 5.29840E-04 3 

11 0.578255 0.578833 0.00000E+00 5.29840E-04 

Error At Convergence 

(radian) 

12 0.578255 0.578833 0.00000E+00 5.29840E-04 2.60902E-14 

 

 

Table 3   The results of E for  M = 30° and e =1 

Cycle  Ex Exα f(Ex) f(Exα) M (Radian ) 

0 0.523599 0.524122 -5.00000E-01 -4.99930E-01 0.523598776 

1 4.252006 4.256258 4.62429E+00 4.63042E+00 M (Degree ) 

2 1.046005 1.047051 -3.43022E-01 -3.42500E-01 30 

3 1.732846 1.734579 2.22348E-01 2.24362E-01 e 

4 1.541528 1.54307 1.83579E-02 1.98555E-02 1 

5 1.522632 1.524155 1.92980E-04 1.64346E-03 E (Radian ) 

6 1.52243 1.523952 1.74547E-07 1.45016E-03 1.52242932 

7 1.522429 1.523952 1.39363E-10 1.44998E-03 E (Degree ) 

8 1.522429 1.523952 1.11466E-13 1.44998E-03 87.22877464 

9 1.522429 1.523952 0.00000E+00 1.44998E-03 Convergence Cycle  

10 1.522429 1.523952 0.00000E+00 1.44998E-03 8 

11 1.522429 1.523952 0.00000E+00 1.44998E-03 

Error At Convergence 

(radian) 

12 1.522429 1.523952 0.00000E+00 1.44998E-03 1.11466E-13 

 

 

Table 4    Summary of the results of E for  M = 30° and 0.001 ≤ e ≤1 

S/N M° e E 
Convergen

ce Cycle 

1 30 0.001 30.02867272 1 

2 30 0.005 30.14386194 2 

3 30 0.01 30.28897786 2 

4 30 0.05 31.49670777 3 

5 30 0.1 33.13157869 3 

6 30 0.5 52.82708717 5 

7 30 1 87.22877464 8 
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CONCLUSION 

Computation of the eccentric  anomaly (E) of Kepler’s satellite orbit using perturbation-based 

seeded secant algorithm is presented. The solution is for the orbit with the value of eccentricity 

(e) in the range 0 ≤ e ≤ 1. Such orbits are either circular or elliptical. The perturbation-based 

seeded secant algorithm is presented along with the sample numerical example used to 

demonstrate the applicability of the perturbation-based seeded secant method. The results show 

that the convergence number increases as the value of e increases. This means that a good 

choice of the initial value of eccentric  anomaly (E) is needed to reduce the convergence cycle 

in those cases when the value of e is high.  
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