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ABSTRACT: Cluster analysis is an unsupervised learning 

method that classifies data points, usually multidimensional into 

groups (called clusters) such that members of one cluster are 

more similar (in some sense) to each other than those in other 

clusters. In this paper, we propose a new k-means clustering 

method that uses Minkowski’s distance as its metric in a normed 

vector space which is the generalization of both the Euclidean 

distance and the Manhattan distance. The k-means clustering 

methods discussed in this paper are Forgy’s method, Lloyd’s 

method, MacQueen’s method, Hartigan and Wong’s method, 

Likas’ method and Faber’s method which uses the usual 

Euclidean distance. It was observed that the new k-means 

clustering method performed favourably in comparison with the 

existing methods in terms of minimization of the total intra-cluster 

variance using simulated data and real-life data sets. 
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INTRODUCTION 

Clustering as a mechanism is applied to a wide range of disciplines like anthropology, 

bioinformatics, biology, computer science, data mining, geography, marketing, psychology, 

statistics (Anderberg, 1973; Everitt et al., 2011) and have a common goal which is to partition 

a given set of data points into clusters such that similar points are classified to the same cluster, 

whereas dissimilar ones are not (Forgy, 1965; MacQueen, 1967; Hartigan, 1975; Lloyd, 1982). 

The most popular formulation in clustering is k-means which purpose is to either minimize the 

total intra-cluster variance or to maximize the expected similarity between data points and their 

associated cluster centres (Slonim et al., 2013). Johnson and Wichern (2002) stated that clusters 

of data points should exhibit high internal (within-clusters) homogeneity and high external 

(between-clusters) heterogeneity; clustering is done based on similarities or distances and it is 

divided into two main groups which are based on the structure of their output namely: 

hierarchical and non-hierarchical clustering methods. Hierarchical clustering is a method of 

cluster analysis that seeks to build a hierarchy of clusters. The clusters are merged 

(agglomerative methods) or split (divisive methods) step-by-step based on the applied 

similarity measure. The results of a hierarchical clustering method entail that agglomerative 

and divisive methods can be displayed graphically using a tree-like diagram known as a 

dendrogram. While non-hierarchical or partitioning clustering methods partition the data object 

set into clusters where every pair of object clusters is either distinct (non-overlapping) or has 

some members in common (overlapping), partitioning clustering begins with a starting cluster 

partition which is iteratively improved until a locally optimal partition is reached. Amongst the 

partitioning clustering methods, the k-means method is the most popularly and commonly used 

in practice.  

The purpose of this paper is to propose a new k-means clustering method that uses Minkowski’s 

distance as its metric when calculating between each data points and the cluster centroids. 

The rest of this paper is organized as follows: Section 2 discusses the methods used in this 

paper. In section 3, the experimental results of the simulated data and the real-life data is shown 

and discussed. Section 4 is the conclusion of the paper.  

 

METHODOLOGY 

Several k-means clustering methods aim to classify points or objects to be analyzed into well-

separated groups (clusters). Six k-means clustering methods will be discussed in this paper and 

the proposed method is a batch algorithm that uses the Minkowski distance instead of the usual 

Euclidean distance. Minkowski’s distance has some advantages over the Euclidean distance 

that is used in the k-means clustering methods, and it is based on the fact that it is easy to 

compute and allows scalable solutions of other problems such as clustering and indexing 

(Gunopulos and Das, 2001). The rationale behind this developed method is based on the 

assumption that an optimal clustering solution with k clusters can be obtained through local 

search.  To be able to use any of the six methods, the number of clusters present in the data 

need to be known; multiple runs or trials will be necessary to find the best number of clusters. 

There is no best method, as the tendency of generating global optimum depends on the 

characteristics of the data set, size, and the number of variables in the cases. The k-means 

clustering methods have two phases of iteration namely: the assignment or initialization phase 
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which involves an iterative process where each data point is assigned to its nearest centroid 

using any metric of choice; the next is the centroid update phase, where clusters centroids are 

updated given the partition obtained by the previous phase. The iterative process stops when 

no data point change clusters or some maximum number of iterations is reached. 

Forgy’s Method 

Forgy (1965) proposed a batch algorithm which is seldom referred to as the traditional k-means 

algorithm. The algorithm is an offline centroid clustering model which is based on the 

minimization of the average squared Euclidean distance between the data points and the 

cluster’s centre known as centroid.  A centroid is the centre of a geometric object and it is seen 

as a generalization of the mean. A batch algorithm is an algorithm where a transformative step 

is applied to all data-point (case) at once, where 𝑐 is the cluster centre in the Euclidean distance 

and 𝑥 is the case, 𝑖 is the dimension of 𝑥(𝑜𝑟 𝑐) being compared and k is the total number of 

dimensions. That is, 

𝑑𝑒𝑢𝑐 = √∑𝑘
𝑖=1 (𝑐𝑖 − 𝑥𝑖)

2                                                           (1) 

being the most common distance. Forgy's method starts with the choosing of k instance or 

initialization of data set uniformly at random and assigns the rest of the data points to the closest 

cluster (Peña et al, 1999). This method is very applicable because of its simplicity and high-

speed intensity. It also treats the data set as a continuous distribution. Given the data 

set {𝑥1, 𝑥2, . . . , 𝑥𝑛} 𝜖 𝑅
𝑑, where 𝑅𝑑 is the real d-dimensional data space (or the Euclidean d-

dimensional data space), the algorithm tries to find a set of k cluster centres, 𝑐 =
{𝑐1, 𝑐2, . . . , 𝑐𝑘} 𝜖 𝑅

𝑑. The error function for a continuous distribution is defined as 

𝐸 = ∑𝑘
𝑖=1 ∫ 𝑓(𝑥)𝑑(𝑐𝑖 , 𝑥𝑖)𝑑𝑥         (2) 

In the above equation, 𝑓(𝑥) is the probability density function at 𝑥 and 𝑑(𝑐𝑖 , 𝑥𝑖) is the distance 

function. We note that if the probability density function is not given (or known), then it has to 

be deduced (generated) from the given data. Though the k-means algorithm converges to a 

local optimum, the limit point depends on the initial points. Hence, it is appropriate to start 

with a reasonable initial partition in order to realize a high-quality clustering solution. 

However, there is no efficient and universal technique for obtaining such initial partitions 

theoretically.  

Forgy’s method has a major drawback, the possibility of choosing an outlier as an initial cluster 

centre, in such a case, it is possible that no other data point is assigned to it, and hence the 

cluster with the outlier as its centre remains singleton. Also, there is no mechanism to avoid 

choosing data points that are very close to each other cluster centres. 

Algorithm.1: The Forgy’s (Traditional) Algorithm. 

1.  Begin with any desired initial configuration. Go to step 2 if beginning with a set of seed 

points; go to step 3 if beginning with a partition of the data units. 

2.  Assign each data unit to the cluster with the nearest seed point. The seed points remain fixed 

for a full cycle through the entire data set. 
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3.  Compute new seed points as the centroids of the cluster of the data units. 

4.  Repeat step 2 and 3 until the process converges; that is, continue until no data units change 

their cluster membership at step 2. 

Lloyd’s Method 

Lloyd (1982) proposed a method that is widely known as the standard k-means algorithm; it is 

also a batch algorithm that is based on the minimization of the average squared Euclidean 

distance between the data items and the cluster centres like Forgy’s method. The dissimilarity 

between the Lloyd algorithm and the Forgy algorithm is that the Lloyd algorithm treats the data 

set as a discrete distribution while the Forgy algorithm treats the data set as a continuous 

distribution.  While the similarity between them is that they have the same procedure, the error 

function for a discrete distribution is defined as 

𝐸 = ∑𝑘
𝑖=1 ∑𝑛

𝑗=1 𝑓(𝑥)𝑑(𝑐𝑖 , 𝑥𝑖)         (3) 

In Equation (3) above, 𝑑(𝑐𝑖 , 𝑥𝑖) is the distance function of the data point 𝑥𝑖 and cluster centre 𝑐𝑖. 
The first step of the algorithm begins with choosing the number of clusters k and its initial 

centroids or cluster centres. It could be done by either using k random observations or from the 

k observations that are the farthest from one another in the data space. Initialization of the 

centroids occurs only once, and once the initial centroids have been chosen, iterations are done 

on the following two steps. First, the data set is assigned to cluster centroids (centres), using 

any of the distance metrics. All cases assigned to a centroid are said to be part of the centroids 

subspace c (Rd) (Morissette and Chartier, 2013). Second, update the value of the centroid by 

using the mean of the data points (cases) assigned to the centroid. 

Algorithm 2: The Lloyd’s (Standard) Algorithm. 

1.   Choose k data objects representing the cluster centroids. 

2.  Assign each data object of the entire data set to the cluster having the closest centroid. 

3. Compute a new centroid for each cluster by averaging the data observations belonging to the 

cluster. 

4.  If at least one of the centroids has changed, go to step 2, otherwise, go to step 5 

5.  Output the clusters. 

MacQueen’s Method 

MacQueen (1967) proposed MacQueen's algorithm, and it is often referred to as a basic k-

means algorithm which is an online (or incremental) algorithm. MacQueen's method is similar 

to Forgy’s and Lloyd’s Methods, but the main difference is that the centroids are updated by 

re-calculating the points (cases) any time it is moved. Once the initial centroids have been 

chosen in the same way as Lloyd’s algorithm, the iterations follow: For each case (𝑥𝑖) in turn, 

after arbitrarily partitioning of points (items) into clusters, we compute the coordinates (𝑥𝑖
′𝑠) of 

the cluster centroid (mean), likewise the Euclidean distance is computed for each point from 

the group centroids and reassign each point to the nearest group. If a point is moved from its 
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initial position, the cluster centroid must be recalculated or updated before computing the 

squared distances.  

If the centroid of a case belongs to the nearest subspace, no change is made. If another centroid 

is closest to the subspace, the case is re-assigned to the other centroid and the centroids for both 

the old and new subspaces (centres) are recalculated as the mean of the cases. When we see 

that each point is currently assigned to the clusters with the nearest centroid, the process stops. 

Algorithm 3: The MacQueen’s (Basic) Algorithm. 

1. Choose k points as initial cluster centroids. 

2. Assign each object to the cluster that has the closest centroid. 

3. When all objects have been assigned, re-compile the positions of the k centroids. 

4. If at least there is a change in one of the centroids, repeat step 2 and 3, otherwise go to step 5. 

5. Output the clusters.   

Hartigan and Wong’s Method 

Hartigan and Wong (1979) proposed a non-Lloyd heuristic method known as a conventional 

k-means algorithm that updates centres considering each point, rather than after each pass over 

the entire data set. 

The algorithm searches for the partition of data space with the locally optimal within-cluster 

sum of squares error (SSE), which means that it may assign a case to another subspace, even if 

it currently belongs to the subspace of the closest centroid; if doing so minimizes the total 

within-cluster sum of squares (Morissette and  Chartier, 2013). The initialization of the cluster 

centres is done in the same way as that of Lloyd’s and Forgy’s algorithms. The points (cases) 

are designated (assigned or allotted) to the centroid nearest to them and the centroids are 

calculated as the mean of the designated data points. The iterative steps are as follows: 

Step 1. For each point I(𝐼 = 1,… ,𝑀), find its closest and second closest cluster centres, 𝐼𝐶1(𝐼) 
and 𝐼𝐶2(𝐼), respectively. Assign point I to cluster 𝐼𝐶1(𝐼). 

Step 2. Update the cluster centres to be the average of the points contained within them. 

Step 3. Initially, all clusters belong to the live set (specified number of k). 

Step 4. This is the optimal transfer (OPTRA) stage: Consider each point I (𝐼 = 1, 2, … ,𝑀) in 

turn. If cluster L (𝐿 = 1, 2, … , 𝐾) is updated in the last quick-transfer (QTRAN) stage, then the 

cluster belongs to the live set throughout this stage. Otherwise, at each step, it is not in the live 

set if it has not been updated in the last M optimal-transfer steps. Let point I be in cluster L1. 

If L1 is in the live set, do step 4a; otherwise, do step 4b.   

Step 4a. Compute the minimum of the quantity, 𝑅2 = [𝑁𝐶(𝐿) ∗ 𝐷(𝐼, 𝐿)2]/[𝑁𝐶(𝐿) + 1], over 

all clusters 𝐿(𝐿 ≠ 𝐿1, 𝐿 = 1,2, … , 𝐾) where the number of points in cluster L is denoted by 

𝑁𝐶(𝐿); while the number of points in cluster 𝐿1 is 𝑁𝐶(𝐿1); 𝐷(𝐼, 𝐿) is the Euclidean distance 

between point I and cluster L; 𝐷[𝐼, 𝐿(𝐼)]is the Euclidean distance between I and the cluster 

mean of the cluster containing I; 𝐷(𝐼, 𝐿)2 is the squared Euclidean distance between point I 
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and cluster L. Let L2 be the cluster with the smallest R2. If this value is greater than or equal 

to 𝑅1 = [𝑁𝐶(𝐿1) ∗ 𝐷(𝐼, 𝐿1)2]/[𝑁𝐶(𝐿1) − 1], no reallocation is necessary and L2 is the 

new 𝐼𝐶2(𝐼). Otherwise, point I is allocated to cluster L2, and L1 is the new IC2 (I). Cluster 

centres are updated to be the means of points assigned to them if reallocation has taken place. 

The two clusters that are involved in the transfer of point I at this particular step are now in the 

live set. 

Step 4b. This step is the same as step 4a, except that the minimum R2 is computed only over 

clusters in the live set. 

Step 5. Stop if the live set is empty; otherwise, go to step 6; after one pass through the data set. 

Step 6. This is the quick-transfer (QTRAN) Stage: Consider each point 𝐼(𝐼 = 1, 2, … ,𝑀) in 

turn. Let 𝐿1 = 𝐼𝐶1(𝐼) and 𝐿2 = 𝐼𝐶2(𝐼). It is not necessary to check point I if both the clusters 

𝐿1 and 𝐿2 have not changed in the last M steps. Compute the values:  

𝑅1 =  
[𝑁𝐶(𝐿1)∗𝐷(𝐼,𝐿1)2]

[𝑁𝐶(𝐿1)−1]
  and  𝑅2 = [𝑁𝐶(𝐿2) ∗ 𝐷(𝐼, 𝐿2)2]/[𝑁𝐶(𝐿2) + 1] 

If R1 is less than R2; point I remains in cluster 𝐿1. Otherwise, switch 𝐼𝐶1(𝐼) and 𝐼𝐶2(𝐼) and 

update the centres of clusters 𝐿1 and 𝐿2. The two clusters are also noted for their involvement 

in a transfer at this step. 

Step 7. If no transfer took place in the last M steps, go to step 4, otherwise, go to step 6. 

Algorithm 4: The Hartigan and Wong’s (Conventional) Algorithm.  

1. Choose the number of clusters, k, and tentative centroids  𝑐1, 𝑐2, … , 𝑐𝑘. 

2. Observe an entity 𝑖 ∈ 𝐼 coming either randomly or according to a pre-specified 

(dynamically) changing order. 

3. 𝑑𝑖𝑗 =  distance between case i and cluster j; 

4. 𝑑𝑖𝑗 =𝑎𝑟𝑔 𝑎𝑟𝑔 𝑚𝑖𝑛   1≤𝑗≤𝑘𝑑𝑖𝑗 

5. Assign cases i to cluster  𝑛𝑖 ; 

6. Re-compute the cluster means of any changed cluster above; 

7. If no further change of cluster membership occurs in a complete iteration; go to step 8, 

8. Output results. 

Likas’ Method 

Likas et al. (2003) proposed a global k-means clustering algorithm, which constitutes a 

deterministic effective global clustering algorithm for the minimization of the clustering error 

that employs the basic k-means algorithm as a local search procedure.  

The algorithm proceeds in an incremental way, which helps in solving a clustering problem 

with k clusters; all problems that are intermediate with 1,2, … , 𝑘 − 1 clusters are sequentially 
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solved. The basic idea behind the global k-means algorithm is that an optimal solution for a 

clustering problem with k clusters can be obtained by carrying out a series of local searches 

using the Basic k-means algorithm. At each local search, the 𝑘 − 1 cluster centres are always 

initially placed at their optimal positions corresponding to the clustering problem with 𝑘 − 1 

clustering (Gan et al., 2007). The remaining 𝑘𝑡ℎ cluster centre is initially placed at several 

positions within the data space.  Since for 𝑘 = 1 the optimal solution is known, it can be 

iteratively applied to the above procedure to find optimal solutions for all m-clustering 

problems 𝑚 = 1,… , 𝐾. (Likas et al., 2003). The global k-means algorithm is described as 

follows: Suppose that 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛},  𝑥𝑛 ∈ 𝑅𝑑  be a given data set in a d-dimensional 

space. The k-clustering problem aims at partitioning the dataset into k disjoint subsets 

(clusters) 𝑐1, 𝑐2, … , 𝑐𝑘, such that the clustering criterion is optimized. The most widely used 

clustering criterion is the sum of the squared Euclidean distances between each data 

point, 𝑥𝑖 ,  and the centroid, 𝑚𝑗. This criterion is called clustering error and it depends on the 

cluster centre,  𝑚1, 𝑚2, … ,𝑚𝑘: 

𝐸(𝑚1, 𝑚2, … ,𝑚𝑘) = ∑𝑛
𝑖 ∑𝑘

𝑗 𝑑𝑒𝑢𝑐
2 (𝑥𝑖 , 𝑚𝑗)                                    (4) 

In Equation (4) above, 𝑥𝑖 and 𝑚𝑗 , are the data point and the cluster centre (centroid) while 

𝑑𝑒𝑢𝑐
2 (. , . ) is the squared Euclidean distance which is one of the most widely used clustering 

criteria. This method does not depend on any initial values. Instead of selecting initial values 

randomly for all cluster centres as is the case with most global clustering algorithms, the 

method proceeds in an incremental way attempting to optimally add one new cluster centre at 

each stage of the iteration. 

     To be more specific in solving a clustering problem with k clusters, the iterative method is 

as follows; we start with 𝑘 = 1 cluster and find its optimal position that corresponds to the 

centroid of the data set, 𝑥. To solve the problem with two clusters (𝑘 = 2), we perform N 

executions of the k-means algorithm from the following initial positions of the cluster centres: 

the first cluster centre is always placed at the optimal position for the problem with 𝑘 = 1, 
while the second centre at execution is placed at the position of the data point, 

𝑥𝑛 (𝑛 = 1,2, … ,𝑁). The best solution obtained after the N executions of the Basic k-means 

algorithm is considered as the solution for the clustering problem with 𝑘 = 2. In general, let 
[𝑚1

∗(𝑘),𝑚2
∗(𝑘), … ,𝑚𝐾

∗ (𝑘)]denote the final solution for the k-clustering problem. Immediately 

the solution of the k-clustering problem has been found, we try to find the solution of the K-

clustering problem as follows: we perform N runs of the k-mean algorithm with k clusters 

where each run n starts from the initial state[𝑚1
∗(𝑘 − 1),𝑚2

∗(𝑘 − 1), … ,𝑚𝐾−1
∗ (𝑘 − 1), 𝑥𝑛]. 

     The best solution obtained from the N runs is considered as the solution 
[𝑚1

∗(𝑘),𝑚2
∗(𝑘), … ,𝑚𝐾

∗ (𝑘)] of the K-clustering problem. By proceeding in the above fashion, 

we finally obtain a solution with m clusters having also found a solution for all K-clustering 

problems with 𝑘 < 𝑚 (Likas et al., 2003). The global K-means algorithm for the computation 

of 𝑞 ≤ 𝑛 cluster in the data set A can be described as follows. 
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Algorithm 2.5: The Likas (Global) Algorithm. 

1. (Initialization) compute the centroid 𝑥1, of the set A:  

𝑥1 =
1

𝑛
∑

𝑛

𝑖=1

𝑚𝑖 ,  𝑚𝑖 ∈ 𝐴, 𝑖 = 1,2,⋯ , 𝑛 𝑎𝑛𝑑 𝑠𝑒𝑡 𝑘 = 1. 

2. Set 𝑘 = 𝑘 + 1 and consider the centres,𝑥1, 𝑥2, ⋯ , 𝑥𝑘−1, from the previous iteration. 

3. Consider each point m, of A as a starting point for the k cluster centre; thus obtain n 

initial solution with k points (𝑥1, 𝑥2, ⋯ , 𝑥𝑘−1, m); apply Basic K-means algorithm to 

each of them; keep the best k-partition obtained and its centres, 𝑥1, 𝑥2, ⋯ , 𝑥𝑘. 

4. If 𝑘 = 𝑛 then stop, otherwise go to step 2. 

Faber’s Method 

Faber (1994) proposed Faber’s method which is popularly known as the continuous k-means 

algorithm. The continuous k-means algorithm is faster than the standard k-means algorithm 

and it is also different from the standard k-means algorithm in two ways. First, the reference 

points in the continuous k-means algorithm are chosen as a random sample from the whole 

population of data point, while in the standard k-means algorithm the initial reference points 

are chosen more or less arbitrarily. Secondly, the way the data points are treated during the 

update process. During the iteration, the standard k-means algorithm examines all of the data 

points in sequence while the continuous k-means algorithm examines only a random sample of 

data points. If the data set is very large and the sample is representative of the data set, the 

continuous k-means algorithm should converge much faster than the algorithm that examines 

every point in the sequence. To be precise, the continuous k-means algorithm adopts 

MacQueen’s method of updating the centroids during the initial partitioning, when the data 

points are first assigned to clusters (Faber, 1994). 

Theoretically, random sampling represents a return to Macqueen’s original concept of the 

algorithm as a method of clustering data over continuous space. In Macqueen’s formulation, 

the error measure 𝐸𝑖 for each region 𝑅𝑖 is given by 

𝐸𝑖 = ∫
 

𝑥∈𝑅𝑖
𝑓(𝑥) ∥ 𝑥 − 𝑧𝑖 ∥

2 𝑑𝑥                                                                         (5) 

where 𝑓(𝑥) is the probability distribution function, which is a continuous function defined over 

the space, 𝑥 is the data point and 𝑧𝑖 is the centroid of the region 𝑅𝑖; while 𝐸𝑖 is the total error 

measure. Hence, a large set of discrete data point can be seen as a large sample as well as a 

good estimate of the continuous probability density 𝑓(𝑥). Then it suffices that a random sample 

of the data set can also be a good estimate of 𝑓(𝑥). Such a sample yields a representative set 

of cluster centroids and a reasonable estimate of the error measure without using all the points 

in the original data set. 
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New K-means Method 

This method uses the Minkowski’s distance, or r-metric, between vectors or N-dimensional 

points where 𝑦 = (𝑦𝑣) and 𝑐 = (𝑐𝑣) which is defined by the formula    

𝑑(𝑦, 𝑐) = [∑𝑁
𝑣=1 |𝑦𝑣 − 𝑐𝑣|

𝑟]
1

𝑟                                                                                                       (6)
  

In Equation (6), 𝑦𝑣 are data points, 𝑐𝑣  are cluster centres (centroids) and  ∑𝑁
𝑣=1 |𝑥𝑣 − 𝑦𝑣|

𝑟 is 

the r Minkowski distance. In application, when values 𝑟 = 2 (Euclidean metric), 𝑟 = 1 

(Manhattan, or city block, metric) and 𝑟 → ∞ (Chebyshev, or Maximum, metric). However, 

the Euclidean k-means criterion is the usual k-means when 𝑟 = 2 which is stated as 

  

𝐸 = 𝑊(𝑠, 𝑐) = ∑𝐾
𝑘=1 ∑𝑖=𝑆𝐾

𝑑𝑒𝑢𝑐
2 (𝑦𝑖, 𝑐𝑘)       

where k represents the number of clusters, 𝑐𝑘𝜖 𝑐 = {𝑐1, 𝑐2, … , 𝑐𝑘} is the centroid of cluster 𝑠𝑘,
𝑑𝑒𝑢𝑐
2 (𝑦𝑖, 𝑐𝑘) is the squared Euclidean distance between an entity (cluster point) 𝑦𝑖𝜖 𝑠𝑘 and its 

respective centroid 𝑐𝑘. The Minkowski k-means criterion allows the use of any distance 

function and W(s,c) is the square error criterion which is the sum of values over all clusters. 

Focusing on the Minkowski metric, which is between the N-dimensional entities 𝑦𝑖 and 𝑐𝑘 and 

is defined by  

𝑑(𝑦𝑖 , 𝑐𝑘) = [∑𝑁
𝑉=1 |𝑦𝑖𝑣 − 𝑐𝑘𝑣|

𝑟]
1

𝑟                                                     (7)  

 r is the exponent or power of Equation (7) which becomes  

𝑊𝑟(𝑠, 𝑐) = ∑𝐾
𝑘=1 ∑𝑖=𝑆𝐾

𝑑𝑟(𝑦𝑟 , 𝑐𝑘) = ∑𝐾
𝑘=1 ∑𝑖𝜖𝑆𝑘

∑𝑁
𝑣=1 |𝑦𝑖𝑣 − 𝑐𝑘𝑣|

𝑟                (8) 

This method is a batch k-means algorithm in which the minimum distance rule applies with the 

distance being the r power of Minkowski r-metric rather than the squared Euclidean distance 

(Amorim and Komisarczuk, 2012; Amorim, 2012; Amorim and Mirkin, 2012).  

Algorithm 6: The New K-Means Algorithm. 

1. Choose at random the number of cluster centres (centroids) 𝑐 = 𝑐1, 𝑐2, … , 𝑐𝑘. 

2. Calculate the distance between each data point and cluster centres using Equation (7)   

3. Assign data point to the cluster centre whose distance from the cluster centre is the minimum 

of all cluster centres.  

4. New cluster centre is calculated using 𝑣𝑖 =
1

|𝐶𝑖|
∑𝑦𝜖𝑐𝑖 𝑦𝑖 where |𝑐𝑖| denotes the absolute 

value of data points in 𝑖𝑡ℎ cluster and 𝑣𝑖 is the mean of the cluster 𝑐𝑖 and ∑ 𝑦𝑖 is the sum 

of points or cases in the data space.  

5. The distance between each data point and new obtained cluster centres is recalculated.  

6. If no data point was reassigned then stop, otherwise repeat step 3 to 5.   



British Journal of Computer, Networking and Information Technology  

ISSN: 2689-5315 

Volume 4, Issue 1, 2021 (pp. 28-41) 

37 Article DOI: 10.52589/BJCNIT-XEPSJBWX 

  DOI URL: https://doi.org/10.52589/BJCNIT-XEPSJBWX 

www.abjournals.org 

RESULTS AND DISCUSSION 

This section shows the performance comparison of the modified k-means method and the 

existing six k-means clustering methods using R statistical software (R version 3.2.2) support 

window 64-bit system. We conducted experiments using one simulated data set and two real-

life data sets to ensure the efficiency of the proposed k-means method. The numbers of clusters 

k used are two and three since research has proven that the optimal number of clusters k will 

either be two, three, or four using methods like elbow, the silhouette and the gap statistic 

methods (Kaufman and Rousseeuw, 1990).  

The performance of the proposed method was evaluated using total intra-cluster variance and 

accuracy parameters, after which was ranked. 

Total intra-cluster variance: The total intra-cluster variance is defined as the sum of squared 

distance between points and the corresponding centroid. That is; 𝑊(𝐶𝐾) = ∑𝑥𝑖𝜖𝑐𝑘
(𝑥𝑖 −

𝜇𝑘)
2 where 

● 𝑥𝑖 is the data point belonging to the cluster 𝑐𝑘. 

● 𝜇𝑘 is the mean value of the points assigned to the cluster 𝑐𝑘. 

Accuracy: Accuracy is defined as the ratio of the total number of correctly classified instances 

divided by a total number of correctly plus incorrectly classified instances denoted by Acc. (%). 

Simulated Data 

The simulated data was generated randomly from a Gaussian (Normal) distribution with a 

dimension of 300 rows and 2 columns (categories or attributes) that are divided into two and 

three clusters (that is, k = 2, 3). We chose 300 true centres uniformly at random given the above 

dimension. The point from the Gaussian distributions has a variance of 1 around each true 

centre. Thus, this obtained several well-separated Gaussians with the true centres providing a 

good approximation to the optimal clustering.  

Shown below is the summary table of the results of experiments and data analysis of six 

existing methods when the number of clusters k is two and three respectively: 

Table 1: Summary results of simulated data when the number of clusters k = 2 and 3. 

 

Methods 

When K = 2 When K = 3 Combined 

   Rank 

𝜇     𝜎 Acc. (%) Rank   𝜇 𝜎 Acc. (%) Rank  

Forgy 1.58 0.49 80.8 4 2.25 0.78 81.4   4       8 

Lloyd 1.50 0.50 79.1 6 1.92 0.81 79.0   5      11 

MacQueen 1.50 0.50 79.1 6 2.30 0.75 83.7   3      9 

Hartigan & 

Wong 

1.50 0.50 79.1 

 

6 2.14 0.83 78.3   6      12 

Likas 1.78 0.39 89.0 1 2.54 0.68 88.6   1       2 

Faber 1.76 0.43 83.3 3 2.05 0.92 72.0   7      10 

Proposed 

Method 

1.51 0.42 86.8 2 1.54 0.69 87.5   2       4 
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From the above results of the simulation generated randomly, when the number of clusters k = 

2, the Likas’ method performed best with a minimum standard deviation of 0.39 and a high 

accuracy rate of 89 per cent, followed by the proposed method with a minimum standard 

deviation of 0.42 and accuracy rate of 86.8 because the variance (the total within-cluster sum 

of squares) is minimized; it measures the compactness (i.e. goodness) of the clustering which 

is meant to be as small as possible, also, high accuracy indicates how better the method is. 

When the number of clusters k = 3, Likas’ method also performed best with a standard 

deviation of 0.68 and accuracy rate of 88.6 per cent, followed by the proposed method with a 

standard deviation of 0.690 and an accuracy rate of 87.5 per cent which performed better than 

the other five existing methods. From the combined ranking, the proposed method was second-

best in performance. 

Real-Life Data 

To understand how efficient these methods are under more practical circumstances, we run 

several experiments on two data sets which consist of the iris data set, and the yeast cell cycle 

data set. The two data sets are from UC-Irvine Machine Learning Repository namely: the iris 

data set and the wine data set. Each experiment involves solving the k-means problem on a set 

of points in a real dimensional space. 

Iris Data Set 

The iris flower data set is a multivariate data set with 150 rows (instances) which are divided 

into 3 instances each, where each class refers to a type of iris plant (iris setosa, iris versicolor, 

and iris virginica): the number of columns (attributes) is 4 which consist of sepal length, sepal 

width, petal length and petal width (Fisher, 1936). The summary table of the results of the 

experiments when the numbers of clusters k- two and three are shown in Table 2 below: 

Table 2: Summary results of iris data when the number of clusters k = 2 and 3. 

 

Methods 

When K = 2 When K = 3 Combined 

   Rank 

𝜇     𝜎 Acc. 

(%) 
Rank   𝜇 𝜎 Acc. 

(%) 
Rank  

Forgy 1.35 0.48 83.5 5 1.56 0.81 82.0   5     10 

Lloyd 1.65 0.48 83.5 5 2.49 0.74 85.2   3      8 

MacQueen 1.35 0.48 83.5 5 1.93 0.60 91.5   1      6 

Hartigan & 

Wong 

1.65 0.48 83.5 

 

5 2.08 0.86 79.1   6     11 

Likas 1.63 0.48 84.7 5 2.65 0.72 86.0   2       7 

Faber 1.86 0.35 89.2 2 2.47 0.92 77.4   7      9 

Proposed 

Method 

1.78 0.33 89.7 1 1.95 0.80 82.4   4       5 

 

 

From the above experiments and summary table on the iris data set, it is observed that when 

the number of clusters k = 2, the proposed method performed better than the other existing 

methods with a standard deviation of 0.33 and an accuracy of 89.7 per cent. Also, when the 
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number of clusters k = 3, MacQueen’s method performed better than every other method with 

a standard deviation of 0.60 and 91.5 per cent accuracy; while the proposed method performed 

better than Faber’s method, Forgy’s method and Hartigan & Wong’s method with a minimum 

standard deviation of 0.80 and 82.4 per cent accuracy. Using the combined ranking, the 

proposed method was observed the best in the iris data set. 

Wine Data Set 

The wine data set is multivariate data with 178 rows (instances) and three classes with 13 

attributes (columns). The attributes of the data set are alcohol, malic acid, ash, alkalinity of ash, 

magnesium, phenols, flavonoids, non-flavonoid phenols, proanthocyanins, colour intensity, 

hue, 0D280/0D315 of diluted wines and proline. The output of the experiments when the 

number of clusters k = 2 and 3 will be summarized in Table 3 below: 

Table 3: Summary results of wine data when the number of clusters k = 2 and 3. 

 

Methods 

When K = 2 When K = 3 Combined 

   Rank 

𝜇     𝜎 Acc. 

(%) 
Rank   𝜇 𝜎 Acc. 

(%) 
Rank  

Forgy 1.08 0.269 91.4 5 2.59 0.78 67.8   7     12 

Lloyd 1.92 0.268 91.8 3 2.17 0.49 86.3   2      5 

MacQueen 1.08 0.268 91.8 3 2.13 0.43 88.1   1      4 

Hartigan & 

Wong 

1.92 0.268 91.8 

 

3 1.24 0.50 83.8   3     6 

Likas 1.33 0.339 86.7 7 2.73 0.64 74.8   5     12 

Faber 1.86 0.346 87.2 6  1.87 0.66 73.5   6     12 

Proposed 

Method 

1.91 0.266 92.1 1 2.44 0.63 76.2   4      5 

 

It was observed that when the number of clusters k = 2, the proposed method performed better 

than the other methods with a minimal standard deviation of 0.266 and an accuracy of 92.1 per 

cent. When the number of clusters k = 3, MacQueen’s method outperformed every other 

method with a standard deviation of 0.4310 and an accuracy of 88.10 per cent. The performance 

of the proposed method was relatively efficient than Forgy’s method, Likas’ method and also 

that of Faber’s method with a standard deviation of 0.63 and accuracy of 76.2 per cent. From 

the combined ranking of the wine data set, our proposed method is the second-best in 

minimizing the intra-cluster variance.  

 

CONCLUSION 

In this paper, we have presented a new k-means clustering method that uses Minkowski’s 

distance in calculating between each data points and the cluster centroids which performed 

favourably in comparison with existing methods in terms of minimizing the total intra-cluster 

variance. From the experimental summary results considering the combined ranking, the new 

k-means method was effective than most existing methods both in simulation and real-life data 

sets used when the number of clusters k = 2 and 3. 



British Journal of Computer, Networking and Information Technology  

ISSN: 2689-5315 

Volume 4, Issue 1, 2021 (pp. 28-41) 

40 Article DOI: 10.52589/BJCNIT-XEPSJBWX 

  DOI URL: https://doi.org/10.52589/BJCNIT-XEPSJBWX 

www.abjournals.org 

Acknowledgements 

The authors wish to thank the referees for their worthwhile comments and suggestions. 

 

REFERENCES 

Amorim, R. C. 2012. Constrained clustering with Minkowski weighted k-means. Proceedings 

of the 13th IEEE International Symposium on Computational Intelligence and 

Informatics, 13-17. 

Amorim, R. C., Komisarczuk, P. 2012. On Initializations for the Minkowski weighted k-

means. International Symposium on Intelligent Data Analysis, 45-55.  

Amorim, R. C., Mirkin, B. 2012. Minkowski metric, feature weighting and anomalous cluster 

initializing in k-means clustering. Pattern Recognition, 45 (3), 1061-1075. 

Anderberg, M. R. 1973. Cluster Analysis for Applications. New York: Academic Press. 

Everitt, B., Landau, S., Leese, M., Stajl, D. 2011. Cluster Analysis, 5thedition, John Wiley 

and Sons.  

Faber, V. 1994. Clustering and the continuous k-means algorithm: Los Alamos Science, 22, 

138-144. 

Fisher, R. A. 1936. ”The Use of Multiple Measurements in Taxonomic Problems, “Annals of 

Eugenics, 3, 179-188. 

Forgy, E. W. 1965. Cluster analysis of multivariate data: efficiency versus interpretability of 

classification. Biometrics, 21, 768-769. 

Gan, G., Ma, C., Wu, J. 2007. Data Clustering: Theory, Algorithms, and Applications, SIAM 

Series. 

Gunopulos, D., Das, G. 2001. Time series similarity measures and time series indexing. 

Proceedings of the 2001 ACM SIGMOD International Conference on Management of 

Data, pp. 624. New York: ACM Press. 

Hartigan, J. A. 1975. Clustering Algorithms. New York: John Wiley and Sons. 

Hartigan, J. A., Wong, M. A. (1979). Algorithm AS 136: A k-means clustering algorithm, 

Journal of the Royal Statistical Society. Series C (Applied Statistics), 28 (1), 100-108. 

Johnson, R. A., Wichern, D. W. 2002. Applied Multivariate Statistical Analysis: 5th Edition, 

Eaglewood Cliffs, NJ: Prentice-Hall. 

Kaufman, L., Rousseeuw, P. J. 1990. Finding Groups in Data, An Introduction to Cluster 

 Analysis. Wiley Series, New York: John Wiley and Sons. 

Likas, A., Vlassis, N., Verbeek, J. 2003. The global k-means clustering algorithm. Pattern  

Recognition, 36 (2), 451-461. 

Lloyd, S. 1982. Least squares quantization in PCM. IEEE Transaction on Information 

Theory, 28 (2), 129-137. 

MacQueen, J. 1967. Some methods for classification and analysis of multivariate 

observations, In Proceedings of the Fifth Berkeley Symposium on Mathematical 

Statistics and Probability, (1), 281-297. Berkeley, CA: University of California Press. 

Morissette, L., Chartier, S. 2013. The k-means clustering technique: General considerations 

and implementation in Mathematica. Tutorials in Quantitative Methods for Psychology, 

9 (1), 15-24. 

 

 



British Journal of Computer, Networking and Information Technology  

ISSN: 2689-5315 

Volume 4, Issue 1, 2021 (pp. 28-41) 

41 Article DOI: 10.52589/BJCNIT-XEPSJBWX 

  DOI URL: https://doi.org/10.52589/BJCNIT-XEPSJBWX 

www.abjournals.org 

Pe𝑛 a, J., Lozano, J., Larra𝑛 aga, P. 1999. An empirical comparison of four initialization 

methods for the k-means algorithm: Pattern Recognition Letters, 20 (10), 1027-1040. 

Slonim, N., Aharoni, E. and Crammer, K. (2013). Hartigan’s K-Means Versus Lloyd’s K-

Means-Is It Time for a Change? Proceedings of the Twenty-Third International Joint 

Conference on Artificial Intelligence, pp. 1677-1684. 


