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ABSTRACT: One method for handling imprecise, ambiguous, 

and unclear data is rough set theory. Rough set theory offers a 

practical method for making decisions during data extraction. The 

practice of analyzing vast amounts of data to extract useful 

information from a larger collection of raw data is known as data 

mining. This paper discusses consistent data with rough set theory, 

covering blocks of attribute-value pairs, information table 

reductions, decision tables, and indiscernibility relations. It also 

explains the basics of rough set theory with a focus on applications 

to data mining. Additionally, rule induction algorithms are 

explained. The rough set theory for inconsistent data is then 

introduced, containing certain and potential rule sets along with 

lower and upper approximations. Finally, a presentation and 

explanation of rough set theory to incomplete data is given. This 

includes characteristic sets, characteristic relations, and blocks of 

attribute-value pairs. 
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INTRODUCTION 

In recent years, knowledge discovery (data mining, machine learning, extraction rule etc.) has 

gotten a lot of attention in the field of artificial intelligence thus, many types of information-

finding strategies have arisen. Rough set theory (RST) is a widely used mathematics concept 

that was created to deal with uncertainties arising from data that contains ambiguity, 

inconsistencies, and errors. Rough set theory symbolizes an objective approach to 

inconsistencies in data, all computations are conducted directly on data sets. Rough set theory 

is a useful mathematical tool for dealing with inaccuracies, inconsistencies, and incomplete 

data. RST was proposed by Professor Pawlak in 1982 and the basic idea behind the theory can 

be divided into two parts. The first part discusses the concepts and rules from the classification 

of relational databases while the second part discovers knowledge from classifying equivalence 

relation and classification for the approximation of the target. After fuzzy set theory, evidence 

theory, and probability theory, the RST is a novel mathematical technique for handling 

imperfect data in data analysis. The fields in which the RST has been applied include data 

mining, image processing, pattern recognition, medical informatics, and expert systems. 

Numerous studies have combined RST with other artificial intelligence techniques, like neural 

networks and fuzzy logic, with encouraging results. The application of RST to a specific 

complex situation has spurred interest in additional research and development, broadening the 

scope of the original theory and its applications. Moreover, RST is a computationally efficient 

method that is crucial to a wide range of theoretical and practical computing and automation 

applications, particularly in the areas of machine learning, intelligent control and data mining 

(Vluymans et al., 2015). 

Fundamentals of Rough Set Theory 

The rough set concept can be described by set approximations. We now have a more detailed 

description of the problem. Let there be a finite set of objects 𝛺 and a binary relation R⊆
𝛺 × 𝛺. The set R is called the indiscernibility relation while the set 𝛺 is called the universe 

(Zhou & Shen, 2012). Assuming R is an equivalence relation, a pair (𝛺, R) is called an 

approximation space. 

Let Y be a subset of 𝛺, i.e. Y⊆ 𝛺, we can characterise the set Y with respect to R 

R(y) denotes the equivalence class of R and is determined by element y. 

i. R-lower approximation of a set Y with respect to R is the set of all objects that can be 

with certainty which are members of Y with respect to R is given by 𝑅∗(Y), i.e, 𝑅∗(𝑌) =
{𝑦: 𝑅(𝑦) ⊆ 𝑌} 

ii. R-upper approximation  of a set Y with respect to R is the set of all objects that are 

grouped as possible members of Y with respect to R and is given by 𝑅∗(𝑌), i.e., 𝑅∗(𝑌) =
{𝑦: 𝑅(𝑦) ∩ 𝑌 ≠⊘} 

iii. The boundary region of a set Y with respect to R is the set of all objects which cannot 

be grouped as members of Y or –Y and is given as 𝑅𝑁𝑅(𝑌), i.e. 𝑅𝑁𝑅(𝑌) = 𝑅∗(𝑌) − 𝑅∗(Y) 

Rough set theory can now defined thus; 

i. A set Y is called crisp with respect to binary relation R if and only if the boundary 
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region of X is empty. 

ii. A set Y is called rough with respect to binary relation R if and only if the boundary 

region of X is nonempty 

From these above, the following properties of approximations can be easily proven 

i. 𝑅∗(Y) ⊆ 𝑌 ⊆ 𝑅∗(𝑌) 

ii. 𝑅∗(⊘) = 𝑅∗(⊘); 𝑅∗(𝛺) = 𝑅∗(𝛺) = 𝛺 

iii. 𝑅∗(𝑌 ∩ 𝑍) = 𝑅∗(𝑌) ∩ 𝑅∗(𝑍) 

iv. 𝑅∗(𝑌 ∪ 𝑍) = 𝑅∗(𝑌) ∪ 𝑅∗(𝑍) 

v. 𝑅∗(𝑌 ∩ 𝑍) ⊆ 𝑅∗(𝑌) ∩ 𝑅∗(𝑍) 

vi. 𝑅∗(𝑌 ∪ 𝑍) ⊇ 𝑅∗(𝑌) ∪ 𝑅∗(𝑍) 

vii. 𝑅∗(−𝑌) = −𝑅∗(𝑌) 

viii. 𝑅∗(−𝑌) = −𝑅∗(𝑌) 

The Inexactness and topological characterization of imprecision can be defined by these four 

basic classes of rough sets:  

i. If 𝑅∗(𝑌) ≠⊘  𝑎𝑛𝑑 𝑅∗(𝑌) ≠ 𝛺 then a set Y is s roughly R-definable 

ii. If 𝑅∗(𝑌) =⊘  𝑎𝑛𝑑 𝑅∗(𝑌) ≠ 𝛺, then a set Y  is internally R-undefinable 

iii. If 𝑅∗(𝑌) ≠⊘  𝑎𝑛𝑑 𝑅∗(𝑌) = 𝛺, then a set Y is s externally R-undefinable 

iv. If 𝑅∗(𝑌) =⊘  𝑎𝑛𝑑 𝑅∗(𝑌) = 𝛺, then a set Y is s totally R-undefinable 

This classification has the following basic connotations. 

That a set y is roughly R-definable means that with respect to binary relation R, we can choose 

for some elements of 𝛺 that belong to Y and for some elements of 𝛺 that belong to –Y. 

That a set y is internally R-undefinable means that with respect to binary relation R, we can 

choose for some elements of 𝛺 that belong to -Y but we cannot choose for any element of 𝛺 if 

it belongs to Y 

That a set y is externally R-undefinable means that with respect to binary relation R, we can 

choose for some elements of 𝛺 that belong to Y, but we cannot choose for any element of 𝛺 

whether it belongs to –Y 

That a set Y is totally R-undefinable means that with respect to binary relation R, we cannot 

choose any element of U if it belongs to Y or –Y. 
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Rough Set Theory in Data Analysis 

This study is built on the original rough set model's data-mining techniques. Some data mining 

methods and applications used with RST are discussed. RST is built on the notion that we 

associate some information with every element in the universe (data, knowledge), (Skowron, 

et al, 2018). Objects with the same information have a comparable view of the information 

available to them. The mathematical foundation of rough set theory is the similarity relation 

produced in this way. The term "elementary set" refers to any group of all related objects that 

make up an atom (basic granule) of information about the universe. Any union of any 

elementary set is said to have been nominated by a crisp or precise set, otherwise, the set is 

referred to as rough (inaccurate, unclear). Members of the set or its complement are objects 

contained in the available knowledge that cannot be categorized with certainty. Rough sets, 

unlike precise sets, cannot be described in terms of data about their elements (Xu. and Liu, 

2013). A pair of precise sets known as the upper and lower approximation are associated with 

any rough set technique. The lower approximation is made up of all objects that belong to the 

set, whereas the upper approximation is made up of all objects that might belong to the set. 

Information Table 

The data is represented as a table, with each row representing an object and every column 

representing a measurable attribute (a variable, a property, etc.) for each object. Such a table is 

known as an information table. An information table is a pair 𝐺 = (𝛺, 𝐵) such that 𝛺 is a non-

empty finite set of objects otherwise known as the universe and B is a non-empty finite set of 

attributes. That is 𝑏: 𝛺 → 𝑉𝑏 such that for every b ∈ B, the set 𝑉𝑏  is called the value set of B 

(Meia, et al, 2015). The table presents data containing six (6) women who underwent pregnancy 

tests and five (5) sets of attributes were discovered: Mammary gland, Nausea, Bloating, 

Cramping, and Mood swing. 

Table 1: Information Table 

Cases Attributes 

Mammary 

gland  

Nausea Bloating Cramping Mood swing 

1 Normal No Yes Yes Yes  

2 Very big Yes Yes Yes No 

3 Big No No No No 

4 Big Yes Yes Yes Yes 

5 Normal Yes No No No 

6 Big  Yes No yes No 

Let 𝛺 denotes the set of all cases, the set of all attributes denoted by B, and V the set of all 

attribute values. Such a table defines an information function I: 𝛺 × B → V. For example, I(1, 

mammary gland) = normal. 

Let 𝑏 ∈ 𝐵, 𝑣 ∈ 𝑉 and 𝜏 = (𝑏, 𝑣) be an attribute-value pair. A block of 𝜏, denoted by [𝜏], is a 

set of all cases from 𝛺 which attribute b has value v.  For the information table from Table 1, 

the block is defined as follows: 

[(Mammary gland, normal)] = {1, 5}, 

[(Mammary gland, very big)] = {2}, 
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[(Mammary gland, big)] = {3, 4, 6}, 

[(Nausea, no)] = {1, 3,}, 

[(Nausea, yes)] = {2, 4, 5, 6}, 

[(Bloating, yes)] = {1, 2, 4}, 

[(Bloating, no)] = {3, 5, 6}, 

[(Cramping, yes)] = {1, 2, 4, 6}, 

[(Cramping, no)] = {3, 5,}, 

[(Mood swing, yes)] = {1, 4}, 

[(Mood swing, no)] = {2, 3, 5, 6}, 

Let x∈ 𝛺 and A ⊆ B.  An elementary set of A containing x, denoted by [x]A, is the following 

set: 

∩ {[(𝑏, 𝑣)]𝛪𝑏 ∈ 𝐴, 𝛺(𝑥, 𝑏) = 𝑣}  

Elementary sets are a subset of U that consists of all U cases that are distinct from x while 

employing all B attributes. Information granules are the words used in soft computing to 

describe simple sets. Elementary sets are blocks of attribute-value pairs specified by that 

specific attribute when subset B is constrained to a single attribute. Therefore; 

[1](𝑚𝑎𝑚𝑚𝑎𝑟𝑦 𝑔𝑙𝑎𝑛𝑑) = [5](𝑚𝑎𝑚𝑚𝑎𝑟𝑦 𝑔𝑙𝑎𝑛𝑑) = [(Mammary gland, normal)] = {1, 5}, 

[2](𝑚𝑎𝑚𝑚𝑎𝑟𝑦 𝑔𝑙𝑎𝑛𝑑) = [(Mammary gland, very big)] = {2}, 

[3](𝑚𝑎𝑚𝑚𝑎𝑟𝑦 𝑔𝑙𝑎𝑛𝑑) = [4](𝑚𝑎𝑚𝑚𝑎𝑟𝑦 𝑔𝑙𝑎𝑛𝑑) = [6](𝑚𝑎𝑚𝑚𝑎𝑟𝑦 𝑔𝑙𝑎𝑛𝑑) = [(Mammary gland, big)] 

= {3, 4, 6}, 

Also; if A = {Mammary gland, Nausea}, 

[1]𝐴 = [(𝑀𝑎𝑚𝑚𝑎𝑟𝑦 𝑔𝑙𝑎𝑛𝑑, 𝑛𝑜𝑟𝑚𝑎𝑙) ∩ [(𝑁𝑎𝑢𝑠𝑒𝑎, 𝑛𝑜)] = {1},  

[2]𝐴 = [(𝑀𝑎𝑚𝑚𝑎𝑟𝑦 𝑔𝑙𝑎𝑛𝑑, 𝑣𝑒𝑟𝑦 𝑏𝑖𝑔) ∩ [(𝑁𝑎𝑢𝑠𝑒𝑎, 𝑦𝑒𝑠)] = {2},  

[3]𝐴 = [(𝑀𝑎𝑚𝑚𝑎𝑟𝑦 𝑔𝑙𝑎𝑛𝑑, 𝑏𝑖𝑔) ∩ [(𝑁𝑎𝑢𝑠𝑒𝑎, 𝑛𝑜)] = {3},  

[4]𝐴 = [6]𝐴[(𝑀𝑎𝑚𝑚𝑎𝑟𝑦 𝑔𝑙𝑎𝑛𝑑, 𝑏𝑖𝑔 ) ∩ [(𝑁𝑎𝑢𝑠𝑒𝑎, 𝑦𝑒𝑠)] = {4,6},  

[5]𝐴 = [(𝑀𝑎𝑚𝑚𝑎𝑟𝑦 𝑔𝑙𝑎𝑛𝑑, 𝑛𝑜𝑟𝑚𝑎𝑙) ∩ [(𝑁𝑎𝑢𝑠𝑒𝑎, 𝑦𝑒𝑠)] = {5},  

Another technique to define elementary sets is to use the concept of an indiscernibility relation. 

Once more Let A be a nonempty subset of the set B of all attributes. The indiscernibility relation 

IND(A) is a binary relation on 𝛺 for 𝑥, 𝑦 ∈ 𝛺 as; 

(𝑥, 𝑦) ∈ 𝐼𝑁𝐷(𝐴)𝑖𝑓𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝐼(𝑥, 𝑏) = 𝐼(𝑦, 𝑏)𝑓𝑜𝑟 𝑎𝑙𝑙 𝑏 ∈ 𝐴  
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IND(A) is certainly an equivalence relation. Partitions are a convenient way to illustrate 

equivalence relations. A partition of 𝛺 is a set of mutually disjoint nonempty subsets of 𝛺 

known as blocks, the union of which is 𝛺. The partition created by IND(A) will be indicated 

by A*. A* blocks are also referred to as elementary sets associated with A. For instance, 

{𝑀𝑎𝑚𝑚𝑎𝑟𝑦 𝑔𝑙𝑎𝑛𝑑}∗ = {{1, 5}, {2}, {3, 4, 6}} 

{𝑀𝑎𝑚𝑚𝑎𝑟𝑦 𝑔𝑙𝑎𝑛𝑑, 𝑁𝑎𝑢𝑠𝑒𝑎}∗ = {{1}, {2}. {3}, {4.6], {5}} 

So 𝐼𝑁𝐷({𝑀𝑎𝑚𝑚𝑎𝑟𝑦 𝑔𝑙𝑎𝑛𝑑}) = {(1,1), (1,5), (2,2), (3,3), (3,4), (3,6), (4,3), (4,4), 

(4,6), (5,1), (5,5), (6,3), (6,4), (6,6)}   

𝐼𝑁𝐷({𝑀𝑎𝑚𝑚𝑎𝑟𝑦 𝑔𝑙𝑎𝑛𝑑, 𝑁𝑎𝑢𝑠𝑒𝑎} = {(1,1), (2,2), (3,3), (4,4), (4,6), (5,5), (6,4), (6,6)}  

B subset A of the set B is called a reduct if and only if 

A* = B*; and A is minimal with this property, i.e., (A – {b})* ≠ B* for all b ∈ A. 

For instance, {Mammary gland} is not a reduct since 

{𝑀𝑎𝑚𝑚𝑟𝑦 𝑔𝑙𝑎𝑛𝑑}∗ = {{1, 5}, {2}, {3, 4, 6}} ≠ 𝐵∗ = {{1}, {2}, {3}, {4}, {5}, {6}}  

Consequently, {𝑀𝑎𝑚𝑚𝑎𝑟𝑦 𝑔𝑙𝑎𝑛𝑑, 𝑁𝑎𝑢𝑠𝑒𝑎} is not a reduct since 

{𝑀𝑎𝑚𝑚𝑎𝑟𝑦 𝑔𝑙𝑎𝑛𝑑, 𝑁𝑎𝑢𝑠𝑒𝑎}∗ = {{1}, {2}. {3}, {4,6}, {5}} ≠ 𝐵∗ =

{{1}, {2}, {3}, {4}, {5}, {6}}   

Conversely, {𝑀𝑎𝑚𝑚𝑎𝑟𝑦 𝑔𝑙𝑎𝑛𝑑, 𝑁𝑎𝑢𝑠𝑒𝑎, 𝐵𝑙𝑜𝑎𝑡𝑖𝑛𝑔} is a reduct because 

{𝑀𝑎𝑚𝑚𝑎𝑟𝑦 𝑔𝑙𝑎𝑛𝑑, 𝑁𝑎𝑢𝑠𝑒𝑎, 𝐵𝑙𝑜𝑎𝑡𝑖𝑛𝑔}∗ = {{1}, {2}. {3}, {4}, {5}, {6}} = 𝐵∗ =

{{1}, {2}, {3}, {4}, {5}, {6}} 

So 

{𝑀𝑎𝑚𝑚𝑎𝑟𝑦 𝑔𝑙𝑎𝑛𝑑, 𝑁𝑎𝑢𝑠𝑒𝑎}∗ ≠ 𝐵∗  

{𝑀𝑎𝑚𝑚𝑎𝑟𝑦 𝑔𝑙𝑎𝑛𝑑, 𝐵𝑙𝑜𝑎𝑡𝑖𝑛𝑔}∗ ≠ 𝐵∗  

{𝑀𝑎𝑚𝑚𝑎𝑟𝑦 𝑔𝑙𝑎𝑛𝑑, 𝐶𝑟𝑎𝑚𝑝𝑖𝑛𝑔}∗ ≠ 𝐵∗  

{𝑀𝑎𝑚𝑚𝑎𝑟𝑦 𝑔𝑙𝑎𝑛𝑑, 𝑀𝑜𝑜𝑑 𝑠𝑤𝑖𝑛𝑔}∗ ≠ 𝐵∗  

{𝑀𝑎𝑚𝑚𝑎𝑟𝑦 𝑔𝑙𝑎𝑛𝑑, 𝑁𝑎𝑢𝑠𝑒𝑎, 𝐵𝑙𝑜𝑎𝑡𝑖𝑛𝑔}∗ = 𝐵∗  

{𝑀𝑎𝑚𝑚𝑎𝑟𝑦 𝑔𝑙𝑎𝑛𝑑, 𝑁𝑎𝑢𝑠𝑒𝑎, 𝐶𝑟𝑎𝑚𝑝𝑖𝑛𝑔}∗ ≠ 𝐵∗  

{𝑀𝑎𝑚𝑚𝑎𝑟𝑦 𝑔𝑙𝑎𝑛𝑑, 𝑁𝑎𝑢𝑠𝑒𝑎, 𝑀𝑜𝑜𝑑 𝑠𝑤𝑖𝑛𝑔}∗ = 𝐵∗  

{𝑁𝑎𝑢𝑠𝑒𝑎, 𝐵𝑙𝑜𝑎𝑡𝑖𝑛𝑔, 𝐶𝑟𝑎𝑚𝑝𝑖𝑛𝑔}∗ ≠ 𝐵∗  

{𝑁𝑎𝑢𝑠𝑒𝑎, 𝐵𝑙𝑜𝑎𝑡𝑖𝑛𝑔, 𝑀𝑜𝑜𝑑 𝑠𝑤𝑖𝑛𝑔}∗ ≠ 𝐵∗  

{𝐵𝑙𝑜𝑎𝑡𝑖𝑛𝑔, 𝐶𝑟𝑎𝑚𝑝𝑖𝑛𝑔, 𝑀𝑜𝑜𝑑 𝑠𝑤𝑖𝑛𝑔}∗ ≠ 𝐵∗  
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Therefore, reducts are: {𝑀𝑎𝑚𝑚𝑎𝑟𝑦 𝑔𝑙𝑎𝑛𝑑, 𝑁𝑎𝑢𝑠𝑒𝑎, 𝐵𝑙𝑜𝑎𝑡𝑖𝑛𝑔} and 

{𝑀𝑎𝑚𝑚𝑎𝑟𝑦 𝑔𝑙𝑎𝑛𝑑, 𝑁𝑎𝑢𝑠𝑒𝑎, 𝑀𝑜𝑜𝑑 𝑠𝑤𝑖𝑛𝑔} 

Decision Tables 

A decision table is any information table of the form 𝐼 = (𝛺, 𝐵, 𝑉, 𝑓), where   

𝛺 Represents the universe, B is the set of attributes which include (Mammary gland, Nausea, 

Bloating, cramping and mood swing. V represents the union of the set of values of an attribute 

b included in B which can be represented as ∪𝑏∈𝐵 𝑉𝑏, f is a decision function which can be 

represented as 𝑓: 𝛺 × 𝐵 → 𝑉, such that f(y,b) belongs to 𝑉𝑏  for every y that belongs to 𝛺 and 

every attribute value that belongs to A (Ehrenfeucht, et al., 2017). 

Table 2:  Decision table 

Cases Attributes Decision 

Mammary 

gland  

Nausea Bloating Cramping Mood swing Pregnancy 

1 Normal No Yes Yes Yes  No 

2 Very big Yes Yes Yes No Yes 

3 Big No No No No No 

4 Big Yes Yes Yes Yes Yes 

5 Normal Yes No No No No 

6 Big  Yes No yes No Yes 

Table 2 contains data concerning six patients that were subjected to pregnancy tests. The 

condition attributes displayed in the table show the attributes of the patients which are 

Mammary gland, Nausea, Bloating, Cramping, and mood swing respectively, and the results 

of the test are displayed. In the decision table 𝛺 ={1,2,…,6}, Cond={Mammary gland, Nausea, 

Bloating, Cramping, Mood swing}, Dec={Pregnancy} and all attributes domains are equal 

V={Normal, Very big, Big, Yes, No}. 

In Rough Set Theory, the dependency between condition and decision attributes is determined 

by approximations. Given that the state of the patients cannot be determined exactly by the 

attributes possessed by the patients, it is possible to use approximations to identify the state of 

the patients by identifying the functional relationship between decision attributes and values of 

condition (Slezak and Eastwood, 2019). 

The degree of dependency between condition and decision attributes may define the 

consistency factor of the decision rule conflicting. This means using rules with the same 

conditions but different decisions. As an example, the Table 2 consistency factor is 3/6, this 

factor means that three out of six (50%) patients can be appropriately classified as being 

pregnant or not pregnant based on their attributes (Jankowski, et al, 2015) 

Assuming A is a subset of B. It is possible to assign to every subset Y of the universe 𝛺  two 

sets 𝐴(𝑌) and 𝐴(𝑌) which are called, the A-upper and the A-lower approximation of Y denoted 

as; 

 𝐴(𝑌) = {𝑦 ∈ 𝛺: 𝐴(𝑦) ⊓ 𝑌 ≠ 0} 
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𝐴(𝑌) = {𝑦 ∈ 𝛺: 𝐴(𝑦) ⊆ 𝑌}  

A function rule also known as a decision rule 𝑓𝑦 included in 𝛺 is consistent or deterministic if 

for every x included in 𝛺, 𝑥 ≠ 𝑦 (𝑓𝑦/𝐶𝑜𝑛𝑑 = 𝑓𝑥/𝑐𝑜𝑛𝑑) ⟶ (𝑓𝑦/𝐷𝑒𝑐 = 𝑓𝑥/𝐷𝑒𝑐, otherwise, the 

decision rule 𝑓𝑦 is inconsistent or nondeterministic. 

Let there be two decision rules D1 and D2 as follows; 

D1: IF (Mammary gland=Very big AND Nausea= Yes AND Bloating=Yes AND 

Cramping=Yes AND Mood swing=No) Then (Pregnancy=Yes) 

D2: IF (Mammary gland=Normal) Then (Pregnancy= Yes) OR (Pregnancy=No) 

The following are some of the most specific definitions of a decision rule: 

Rule Strength is the count of objects in the data set with the property described by the 

decisions and the rule conditions. The rule strength of D1=6. 

Rule Length is the count of objects in the data set with the property described by the rule 

conditions. The rule length of D1=5. 

An exact rule is the outcome of an exact rule that corresponds to one or more different 

conditions. The set of objects in the lower approximation is used to generate exact rules. D1 is 

an exact Rule. 

Approximate rule: An approximate rule's similar condition corresponds to more than one 

outcome. For the boundary, approximate rules are created. D2 is an approximate rule 

Rule support:  is the number of objects in the data set that have the property described by the 

rule's conditions. The rule support of D1=5 

Rule acceptance: this is the count of a rule's condition that may be used to express the rule 

acceptance measure. It's a subjective metric that expresses the user's confidence in the extracted 

rules. It's a broadening of the rule support and rules coverage concepts. 

Discrimination level (DL): The precision of a rule that represents the corresponding objects 

is measured by the Discrimination level. 

 

CONCLUSION 

In recent years, data mining applications based on the original concept of rough set theory have 

been tried as valuable approaches to produce decision rules. More research is needed on the 

obtained results, especially when quantitative features are involved. Due to space constraints, 

this paper only covers data representation using rough set theory (information and decision 

tables dealing with consistent data), as well as a few basic data mining applications. This paper 

presents the LERS (Learning from Examples based on Rough Sets) data mining system as an 

example of a successful rough set theory data mining application (Ehrenfeucht and Rozenberg, 

2014).  
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FUTURE RESEARCH 

We intend to continue working on the data representation so that it may be applied to 

inconsistent data. 
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