
British Journal of Computer, Networking and Information Technology

ISSN: 2689-5315

Volume 7, Issue 3, 2024 (pp. 1-35)

1 Article DOI: 10.52589/BJCNIT-YDIJNXG2

 DOI URL: https://doi.org/10.52589/BJCNIT-YDIJNXG2

www.abjournals.org

ABSTRACT: The increasing use of credit cards in various

transactions has resulted in an upsurge in fraudulent activities.

This has caused significant financial losses for both individuals

and businesses. This research attempted to focus on developing an

efficient credit card fraud detection system using machine

learning algorithms. Specifically, the Random Forest, Logistic

Regression, K-nearest neighbours, Decision Trees, and naive

Bayes algorithms were used to analyze the dataset and predict

fraudulent activities. The dataset was preprocessed, and feature

engineering techniques were applied to improve the performance

of the models. Experimental results show that the Random Forest

algorithm outperformed other models with an accuracy rate of

99.95%, precision of 0.85%, and recall of 0.85%. These findings

indicate the potential of using machine learning algorithms in

detecting credit card fraud, and the proposed system could be

implemented in financial institutions and payment processing

companies to improve their fraud detection systems.

KEYWORDS: K-nearest neighbors, Machine Learning, Credit

Card, Random Forest, Logistic Regression, Decision Tree and

Bayes Algorithms.

CREDIT CARD FRAUD DETECTION USING MACHINE LEARNING

ALGORITHMS

Balogun Oluwatobiloba Oluwajuwon1, Kupolusi Joseph Ayodele2,

and Akomolafe Abayomi Ayodele3

1Department of Statistics, Federal University of Technology Akure, Nigeria.

2Department of Statistics, Federal University of Technology Akure, Nigeria.

Email: jakupolusi@futa.edu.ng

3Department of Statistics, Federal University of Technology Akure, Nigeria.

Email: aaakomolafe@futa.edu.ng

Cite this article:

Balogun O. O., Kupolusi J. A.,

Akomolafe A. A. (2024),

Credit Card Fraud Detection

Using Machine Learning

Algorithms. British Journal of

Computer, Networking and

Information Technology 7(3),

1-35. DOI:

10.52589/BJCNIT-

YDIJNXG2

Manuscript History

Received: 6 Nov 2023

Accepted: 9 Jan 2024

Published: 29 Jul 2024

Copyright © 2024 The Author(s).
This is an Open Access article

distributed under the terms of

Creative Commons Attribution-
NonCommercial-NoDerivatives

4.0 International (CC BY-NC-ND

4.0), which permits anyone to
share, use, reproduce and

redistribute in any medium,

provided the original author and
source are credited.

mailto:jakupolusi@futa.edu.ng
mailto:aaakomolafe@futa.edu.ng

British Journal of Computer, Networking and Information Technology

ISSN: 2689-5315

Volume 7, Issue 3, 2024 (pp. 1-35)

2 Article DOI: 10.52589/BJCNIT-YDIJNXG2

 DOI URL: https://doi.org/10.52589/BJCNIT-YDIJNXG2

www.abjournals.org

INTRODUCTION

Credit card fraud is a type of financial crime that involves the unauthorized use of someone

else's credit card to make purchases or withdraw funds (Abdallah, 2016). This type of fraud

can be committed in a number of ways, including online, over the phone, or in person. It can

cause significant financial loss and damage to the victim's credit score and reputation.

In Nigeria, credit card fraud is a severe problem that has gotten worse over the past few years.

Over 5,000 instances of credit card theft were detected in Nigeria in 2018, according to a report

by the Central Bank of Nigeria (CBN). In 2019, this number increased to over 10,000, and it is

anticipated that it will continue to increase in years to come (2018-2022, CBN).

According to Federal Trade Commission in 2017 (FTC 2018), there were 1,579 data breaches

and nearly 179 million records among which credit card frauds were the most common form

with 133,015 reports, then employment or tax-related fraud with 82,015 reports, phone fraud

with 55,045 reports, followed by bank frauds with 50,517. A credit card is a type of payment

card that allows users to make purchases without using cash. Instead of paying for a purchase

with cash, the user can borrow money from the credit card issuer to pay for the purchase. The

user is then required to pay back the borrowed amount, plus interest, at a later date (Shashank,

2021).

According to (Dal Pozzolo et al., 2015), a credit score is a numerical representation of an

individual's creditworthiness. It is based on a variety of factors, including the individual's credit

history, outstanding debts, and credit utilization. Credit scores are typically used by lenders

and other financial institutions to assess an individual's risk as a borrower. A higher credit score

indicates that an individual is more likely to repay their debts on time, while a lower credit

score indicates a higher risk of default. As a result, individuals with higher credit scores may

be able to borrow money at more favorable rates, while those with lower credit scores may be

charged higher interest rates or may be denied credit altogether.

LITERATURE/THEORETICAL UNDERPINNING

One of the most common ways that credit card fraud is committed is through skimming

(Kirkos, 2007), which involves attaching a device to a card reader, such as an ATM or gas

pump, to capture the information on the magnetic strip of a credit card. The stolen information

can then be used to make unauthorized transactions, create counterfeit cards or sell the data on

the black market.

Another way that credit card fraud can be committed is through phishing, which involves

tricking individuals into revealing their credit card information through fake emails or websites.

These scams often use official-looking logos and language to make the victim believe that they

are providing their information to a legitimate source (Phua, 2010). The thief can then use this

information to make unauthorized purchases or withdraw money from the cardholder's account.

Credit card fraud has been on the rise in recent years, with reports estimating that the global

cost of this type of crime reached $32 billion in 2018. As the use of credit cards becomes more

widespread, it becomes increasingly important for individuals and businesses to understand the

risks and know how to detect and prevent credit card fraud.

British Journal of Computer, Networking and Information Technology

ISSN: 2689-5315

Volume 7, Issue 3, 2024 (pp. 1-35)

3 Article DOI: 10.52589/BJCNIT-YDIJNXG2

 DOI URL: https://doi.org/10.52589/BJCNIT-YDIJNXG2

www.abjournals.org

Based on findings by Bolton and Hand (2002) and Singh and Grag (2021), traditional methods

to manually detect fraudulent transactions are time consuming and inefficient. Therefore,

advancement in big data has rendered manual methods unrealizable. Hence, recent

computational methodology has been the target of financial institutions to handle credit card

fraud challenges.

These financial institutions and credit card companies can devise several means to investigate

and prevent credit card frauds (Liu, 2006). One method is through the use of fraud detection

software, which analyses transactions for suspicious activity and flags them for further review.

Another method is through the use of machine learning algorithms, which can be trained to

recognize patterns in credit card usage and identify potential fraud. Credit card companies may

employ human analysts who manually review flagged transactions to determine if they are

fraudulent. They may also use data from credit bureaus and other sources to identify potentially

fraudulent activities. Machine learning is a type of artificial intelligence that allows computers

to learn from data and make predictions or decisions without being explicitly programmed to

do so. It involves the use of algorithms that can analyse large amounts of data and identify

patterns or trends that may be indicative of fraudulent activity.

One way that machine learning can be used to detect credit card fraud is through the use of

anomaly detection algorithms. These algorithms are trained on large amounts of data that

include both fraudulent and non-fraudulent transactions. The algorithm looks for patterns in

the data that are unusual or unexpected, and flags these transactions as potentially fraudulent.

Another way that machine learning can be used to detect credit card fraud is through the use of

predictive modelling. This involves training a machine learning model on historical data that

includes both fraudulent and non-fraudulent transactions. The model then uses this information

to make predictions about future transactions, and can flag transactions that are likely to be

fraudulent. In addition to detecting credit card fraud, machine learning can also be used to

prevent it. This, for example, is found in some credit card companies that use machine learning

algorithms to monitor customer behaviour and identify unusual or suspicious activities. If the

algorithm detects something that looks out of the ordinary, it can alert the credit card company

and allow them to take action before the fraud is committed.

Credit card fraud detection is a very difficult problem to solve despite its popularity. In the first

instance, this is as a result of limited availability of data which has made it challenging to match

a pattern for a dataset. None visibility and accessibility of the datasets to the general public has

made results of research often hidden and censored. Therefore, it is challenging to benchmark

for the model built (Powar et al., 2020).

Overall, credit card fraud is a serious concern that can cause significant financial loss and

damage to individuals and businesses. By taking precautions and using advanced detection

methods (Ngai, 2011), credit card companies and financial institutions can help prevent this

type of crime and protect their customers. The use of machine learning in credit card fraud

detection and prevention is a valuable tool that can help keep people's financial information

safe. By analyzing large amounts of data and identifying patterns or trends that may be

indicative of fraud, machine learning algorithms can help detect and prevent credit card fraud,

making it a valuable tool for protecting consumers and their financial information. Although

there seems to be no end to credit card frauds. Irrespective of the tools deployed to minimize

and stop this criminal act, reports of credit card frauds seem to be increasing and fraudsters are

British Journal of Computer, Networking and Information Technology

ISSN: 2689-5315

Volume 7, Issue 3, 2024 (pp. 1-35)

4 Article DOI: 10.52589/BJCNIT-YDIJNXG2

 DOI URL: https://doi.org/10.52589/BJCNIT-YDIJNXG2

www.abjournals.org

devising new means and techniques to carry out their devious acts; yet, suspicious transactions

can be identified using machine learning algorithms.

A Comparative Study of Machine Learning Algorithms for Credit Card Fraud Detection by

Hassan and Al-Amin (2019) compares the performance of different machine learning

algorithms, including support vector machines, decision trees, and neural networks, in

detecting credit card fraud. The authors found that neural networks performed the best, with an

accuracy of 97%, followed by support vector machines with 96% accuracy. They also

highlighted the importance of selecting the appropriate features for training the models and the

need for regular updates to the algorithms to keep up with changing fraudulent patterns.

A number of studies have compared the performance of different machine learning algorithms

on credit card fraud detection. Singh et al. (2020) compared several algorithms, including

random forests, k-nearest neighbours, and logistic regression, on a dataset of credit card

transactions. The study found that the random forest algorithm had the highest accuracy and

the lowest false positive rate. Kim and Lee (2019) provided a comprehensive review of the use

of various machine learning algorithms in credit card fraud detection, including decision trees,

support vector machines, and deep learning. Different machine learning algorithms have

different strengths and weaknesses in dealing with imbalanced data, high dimensionality and

non-linearity. This research aimed at identifying suspicious transactions using machine

learning algorithms and also to compare how these algorithms measure up performance-wise

with different strengths and weaknesses in dealing with imbalanced data, high dimensionality

and non-linearity.

METHODOLOGY

The research design is a combination of exploratory and explanatory research methods.

Machine learning algorithms for credit card fraud detection were employed in this research and

the implementation of the algorithms using R programming language in practice was explained.

A systematic methodology was adopted to achieve the goal and this is done through the

following procedures:

I. Data Collection: The dataset for this study was obtained from a publicly available

credit card fraud detection dataset on Kaggle. The dataset contains transactions made by credit

cards in September 2013 by European cardholders. It includes only transactions that occurred

in two days. Each transaction was labelled as either a normal transaction or a fraudulent

transaction, where 492 frauds out of 284,807 transactions were detected. The dataset contains

31 features, including the amount of the transaction, the time of the transaction, and the type

of card used.

II. Descriptive Analysis: The dataset was summarized and described using some

descriptive statistics like mean, median, standard deviation, minimum and maximum values.

This is achieved by generating summary statistics, visualizing the data through graphs and

charts, and identifying patterns and relationships in the data. The purpose of this is to gain

insights into the data and to identify potential issues or outliers in the data that may affect

subsequent analyses.

British Journal of Computer, Networking and Information Technology

ISSN: 2689-5315

Volume 7, Issue 3, 2024 (pp. 1-35)

5 Article DOI: 10.52589/BJCNIT-YDIJNXG2

 DOI URL: https://doi.org/10.52589/BJCNIT-YDIJNXG2

www.abjournals.org

III. Data Preprocessing: The dataset was first cleaned and preprocessed to remove any

missing or irrelevant data in order to ascertain proper labelling of the data points that will be

suitable for analysis. The dataset was then balanced using the Synthetic Minority Over-

sampling Technique (SMOTE) to ensure that the ratio of fraudulent to non-fraudulent

transactions was equal (Chawla et al., 2002).

IV. Feature Selection: Relevant features were selected from the dataset to be used in the

machine learning model. This was done through the use of various feature selection techniques

such as correlation analysis, mutual information, and chi-square test and the Recursive Feature

Elimination (RFE) algorithm. The RFE algorithm is used to select the most important features

for the model by recursively removing the least important features. The dataset was then

divided into two sets: one for training the model and the other for testing the model.

V. Model Selection: Several machine learning algorithms were used for this study,

including Logistic Regression, K-Nearest Neighbors, Decision Trees, Random Forest, and

Gradient Boosting. These algorithms were chosen because they are commonly used for credit

card fraud detection and have shown to be effective in previous studies.

VI. Model Evaluation: The models were evaluated using several evaluation metrics,

including accuracy, precision, recall, and F1-score. These metrics were used to determine

which algorithm performed the best. The model with the highest evaluation metric scores was

then chosen as the final model for this study.

Logistic Regression Algorithm

James et al. (2013) explained the wide usefulness of logistic regression techniques to machine

learning. A statistical technique like Logistic regression has been widely used for predicting

categorical variables based on a set of predictor variables. It is a type of supervised learning

algorithm that is used for binary classification problems. It is used to predict the probability of

an outcome belonging to one of two classes (usually labeled 0 and 1, yes or no, true or false).

This method can also be used for pattern identification in data for decision making. Some of

the areas of application of Logistic regression include credit scoring, medical diagnosis,

forecasting and market segmentation.

Logistic regression works by finding a mathematical relationship between a set of predictor

variables and a response variable. The predictor variables are the independent variables used

to predict the response variable, which is the dependent variable. The response variable is

usually a categorical variable, such as whether a patient has a disease or not. The predictor

variables are usually numerical, such as age, blood pressure, and cholesterol levels. Logistic

regression models the probability of the response variable given the predictor variables.

The general mathematical equation for logistic regression is:

𝑦 =
1

1 + 𝑒−(𝑎 +𝑏1𝑥1+𝑏2𝑥2+𝑏3𝑥3...)

where: (1)

y is the response variable.

x is the predictor variable.

British Journal of Computer, Networking and Information Technology

ISSN: 2689-5315

Volume 7, Issue 3, 2024 (pp. 1-35)

6 Article DOI: 10.52589/BJCNIT-YDIJNXG2

 DOI URL: https://doi.org/10.52589/BJCNIT-YDIJNXG2

www.abjournals.org

a and b are the coefficients which are numeric constants.

The glm() function is used to create the regression model and also get its summary for analysis.

The model is created by fitting a logistic curve to the data, which is then used to make

predictions. The parameters of the model are estimated using maximum likelihood estimation.

The model is expressed as a logistic equation, which is used to calculate the probability of the

response variable given the predictor variables. This equation is used to classify the data into a

binary outcome. For example, the equation is used to classify whether a patient has a disease

or not given the independent variables. Logistic regression can also be used for multi-class

classification problems. In this case, the model is extended to predict the probability of an

outcome belonging to one of multiple classes (West, 2008).

Logistic regression is a popular algorithm for discovering credit card fraud. It works by training

a model with data from known fraudulent and non-fraudulent transactions. Moreover,

classification of the new transactions as either fraudulent or non-fraudulent is based on the

model. Logistic regression can be used to distinguish patterns in the data that help to

differentiate fraudulent from non-fraudulent transactions. The model can be tuned to identify

more or fewer fraudulent transactions, depending on the desired level of accuracy. By using

logistic regression, financial institutions can more accurately detect and prevent credit card

fraud.

The most common technique for implementing logistic regression is using a training set. This

entails separating the data into a training set and a test set. The training set is used to train the

model and the test set is used to evaluate the performance of the model. Other techniques such

as cross-validation and regularization can also be used to improve the performance of the

model.

In conclusion, logistic regression is a powerful algorithm that can be used for detecting credit

card fraud. It is a simple and efficient algorithm and has been proven to be effective in detecting

fraud. The algorithm is also highly accurate and can be used in real-time applications. However,

it is important to note that it is sensitive to outliers and can be biased if the data is not properly

pre-processed. Finally, the algorithm can be improved by using more sophisticated techniques

such as cross-validation and regularization.

Decision Trees Algorithm

Decision Trees is a type of Supervised Learning algorithm used for classification and

regression problems (Sahin & Duman 2011). It provides a clear and interpretable model that

can be used for decision making by finding relationships between features and outcomes.

Decision Trees is a tree-like structure used for decision making based on the values of the

features. It is one of the simplest and most effective algorithms used for supervised learning

problems. It is widely used in various fields, including finance, healthcare and marketing for

making predictions and decisions.

British Journal of Computer, Networking and Information Technology

ISSN: 2689-5315

Volume 7, Issue 3, 2024 (pp. 1-35)

7 Article DOI: 10.52589/BJCNIT-YDIJNXG2

 DOI URL: https://doi.org/10.52589/BJCNIT-YDIJNXG2

www.abjournals.org

Figure 1: Decision Tree Example

Source: https://data-flair.training/blogs/r-decision-trees/

The decision tree algorithm works by recursively partitioning the data into smaller subsets

based on the values of the features and makes predictions based on the most common outcome

or mean outcome in the subsets. It starts at the root node and splits the data into two or more

subsets based on the test performed on the features. The process of partitioning continues until

a stopping criteria is met, such as maximum tree depth, minimum number of samples in a

subset, or reaching a pure subset (i.e., one where all the samples belong to the same class). The

final result is a tree-like structure where each internal node represents a test on a feature, each

branch represents an outcome of the test, and each leaf node represents a prediction.

The algorithm is trained on a large dataset of credit card transactions, including both normal

and fraudulent transactions. The features used for training the algorithm include the amount of

the transaction, the location of the transaction, the time of the transaction, and others. The final

result is a tree-like structure that can be used to detect fraudulent transactions by evaluating the

features of new transactions and making predictions based on the tree structure.

Decision Trees is a popular and effective supervised learning algorithm used for classification

and regression problems. It provides a clear and interpretable model that can be used for

decision making. In conclusion, using Decision Trees for detecting credit card fraud is a simple,

fast, and effective method. The algorithm is trained on a large dataset of credit card

transactions, including both normal and fraudulent transactions, to produce a tree-like structure

that can be used to detect fraudulent transactions. Despite its limitations, such as overfitting

and instability, Decision Trees is a versatile and efficient algorithm that is suitable for real-time

detection of fraudulent transactions. Further research is needed to evaluate the performance of

Decision Trees in comparison with other machine learning algorithms for detecting credit card

fraud.

https://data-flair.training/blogs/r-decision-trees/

British Journal of Computer, Networking and Information Technology

ISSN: 2689-5315

Volume 7, Issue 3, 2024 (pp. 1-35)

8 Article DOI: 10.52589/BJCNIT-YDIJNXG2

 DOI URL: https://doi.org/10.52589/BJCNIT-YDIJNXG2

www.abjournals.org

Random Forest Algorithm

Random Forest is an ensemble learning algorithm used for classification and regression

problems in machine learning. It was first introduced by Leo Breiman and Adele Cutler in 2001

and has since become a widely used algorithm in the field of machine learning (Kotsiantis et

al., 2007; Enrique, 2020). The Random Forest algorithm is a popular and highly effective

learning method that combines multiple decision trees to make a final prediction. It is a

powerful algorithm that has been used in various fields, including finance, healthcare, and

marketing, for making predictions and decisions.

The Random Forest algorithm works by constructing multiple decision trees using

bootstrapped samples of the original data and a randomly selected subset of the features at each

node. The final prediction is made by combining the predictions of the individual trees, either

by majority voting (for classification) or by averaging (for regression). The use of multiple

trees and bootstrapped samples helps to reduce overfitting, increase diversity among the trees,

and improve the overall accuracy of the model.

Figure 2: Random Forest Classifier

Source: https://www.section.io/engineering-education/introduction-to-random-forest-in-

machine-learning/.

Random Forest has been used for detecting credit card fraud in several studies, with promising

results (Srivastava, 2008). The algorithm can be trained on large datasets of historical

transactions to identify patterns and anomalies that are indicative of fraud. In credit card fraud

detection, the features used for training the Random Forest model may include transaction

details (e.g., amount, location, and time), customer behavior (e.g., spending patterns and

demographics), and device information (e.g., IP address and browser type). The Random Forest

model can then be used to make predictions on new transactions, flagging transactions that are

likely to be fraudulent. Hence, Random Forest is a powerful machine learning algorithm that

has been widely used in various fields for making predictions and decisions. The algorithm's

ability to improve accuracy, reduce overfitting, and handle large datasets makes it a valuable

tool for financial institutions in their efforts to detect and prevent fraud. Despite its limitations,

Random Forest is a fast, efficient, and easy-to-interpret algorithm that has proven to be

effective in detecting credit card fraud. Further research is needed to evaluate the performance

https://www.section.io/engineering-education/introduction-to-random-forest-in-machine-learning/
https://www.section.io/engineering-education/introduction-to-random-forest-in-machine-learning/

British Journal of Computer, Networking and Information Technology

ISSN: 2689-5315

Volume 7, Issue 3, 2024 (pp. 1-35)

9 Article DOI: 10.52589/BJCNIT-YDIJNXG2

 DOI URL: https://doi.org/10.52589/BJCNIT-YDIJNXG2

www.abjournals.org

of Random Forest compared to other machine learning algorithms in the field of credit card

fraud detection and to develop methods to improve the interpretability of the Random Forest

model.

Naive Bayes Algorithm

Classification is a supervised machine learning task that involves assigning a class label to a

new observation based on its features. The Naive Bayes algorithm is a popular algorithm for

classification tasks, as it is simple, fast, and often provides good results. The algorithm is based

on the concept of conditional probability, which is the probability of an event occurring given

that another event has already occurred. For example, the probability of a person having a

particular credit card given that they have a particular credit history. The Naive Bayes

algorithm has been used in a variety of applications, including text classification, spam

filtering, and sentiment analysis.

The Naive Bayes algorithm is based on Bayes' theorem, which states that the probability of a

hypothesis (in this case, a class) given some observed evidence is proportional to the

probability of the evidence given the hypothesis, multiplied by the prior probability of the

hypothesis. In the context of classification, the observed evidence is the feature vector of a new

observation, and the hypothesis is the class label. The formula of Bayes’ Theorem is given as:

 𝑝(𝐸) =
𝑝(𝐻)𝑝(𝐻)

𝑝(𝐸)
 (2)

where:

P(H | E) – the posterior probability. Posteriori basically means deriving theory out of given

evidence. It denotes the conditional probability of H (hypothesis), given the evidence E.

P(E | H) – the likelihood. It is the conditional probability of the occurrence of the evidence,

given the hypothesis. It calculates the probability of the evidence, considering that the assumed

hypothesis holds true.

P(H) – the prior probability. It denotes the original probability of the hypothesis H being true

before the implementation of Bayes’ Theorem, that is, this probability is without the

involvement of the data or the evidence.

P(E) – the probability of the occurrence of evidence regardless of the hypothesis.

The Naive Bayes algorithm is a statistical method that is used for classification tasks. It makes

a strong assumption that the features in a dataset are independent of one another. In the context

of credit card fraud detection, the Naive Bayes algorithm can be used to classify transactions

as either fraudulent or non-fraudulent based on the available information about the transaction.

There are three main types of Naive Bayes algorithms: Gaussian Naive Bayes, Multinomial

Naive Bayes, and Bernoulli Naive Bayes. Gaussian Naive Bayes is suitable for continuous

data, Multinomial Naive Bayes is suitable for discrete data, and Bernoulli Naive Bayes is

suitable for binary data.

To implement the Naive Bayes algorithm, we first need to prepare the data. This involves pre-

processing the data to remove any irrelevant or redundant information, and transforming the

data into a format that is suitable for the algorithm (Russell, 2010).

British Journal of Computer, Networking and Information Technology

ISSN: 2689-5315

Volume 7, Issue 3, 2024 (pp. 1-35)

10 Article DOI: 10.52589/BJCNIT-YDIJNXG2

 DOI URL: https://doi.org/10.52589/BJCNIT-YDIJNXG2

www.abjournals.org

Next, the algorithm is trained on a dataset of normal transactions and fraudulent transactions.

The algorithm calculates the probabilities of each feature being associated with fraudulent

transactions. During the prediction phase, the algorithm takes the features of a new transaction

and calculates the probabilities that it is fraudulent or non-fraudulent. The transaction is then

classified as fraudulent or non-fraudulent based on the highest probability. The results of using

the Naive Bayes algorithm for credit card fraud detection will depend on the quality and size

of the training dataset.

In conclusion, the Naive Bayes algorithm can be an effective tool for detecting credit card

fraud. It has several advantages, including fast training and prediction times, simple

implementation, and the ability to handle missing data. However, its limitations, such as the

assumption of independence among features, must also be considered. The Naive Bayes

algorithm should be used in combination with other techniques, such as machine learning

algorithms, to improve its overall performance.

In general, Naive Bayes has a fast training and prediction time and is not sensitive to irrelevant

features. It is also simple to implement and can handle missing data.

However, the strong assumption of independence among features can lead to inaccurate

predictions. Additionally, Naive Bayes is not suitable for complex decision boundaries, as it

can only make linear separations between classes.

K-Nearest Neighbours Algorithm

The k-NN algorithm is a simple, effective and intuitive machine learning algorithm that is used

for both classification and regression tasks. Given a new observation, the k-NN algorithm

assigns it to the class of its k nearest neighbors in the training dataset.

Assume we are given a dataset where X is a matrix of features from an observation and Y is a

class label, k-nearest neighbors then is a method of classification that estimates the conditional

distribution of Y given X and classifies an observation to the class with the highest probability.

Given a positive integer k, k-nearest neighbors looks at the k observations closest to a test

observation 𝑥0 and estimates the conditional probability that it belongs to class j using the

formula:

𝑃𝑟(𝑌 = 𝑗|𝑋 = 𝑥𝑜) =
1

𝑘
∑𝑖∈𝑁0

𝐼(𝑦𝑖 = 𝑗) (3)

where:

𝑁0 is the set of k-nearest observations and

I(𝑦𝑖=j) is an indicator variable that evaluates to 1 if a given observation (𝑥𝑖,𝑦𝑖) in 𝑁0 is a

member of class j, and 0 if otherwise.

After estimating these probabilities, k-nearest neighbors assign the observation 𝑥0 to the class

which the previous probability is the greatest. The following plot can be used to illustrate how

the algorithm works:

British Journal of Computer, Networking and Information Technology

ISSN: 2689-5315

Volume 7, Issue 3, 2024 (pp. 1-35)

11 Article DOI: 10.52589/BJCNIT-YDIJNXG2

 DOI URL: https://doi.org/10.52589/BJCNIT-YDIJNXG2

www.abjournals.org

Figure 3: k-Nearest Neighbours

Source: (STAT Library 2020)

If we choose K=3, then we have 2 observations in Class B and one observation in Class A. So,

we classify the red star to Class B.

If we choose K=6, then we have 2 observations in Class B but four observations in Class A.

So, we classify the red star to Class A.

The k-NN algorithm requires two main components: the distance metric and the value of k.

The distance metric is used to determine the similarity between two observations, and the value

of k determines the number of nearest neighbors to consider when making a prediction.

Common distance metrics include Euclidean distance, Manhattan distance, and cosine

similarity.

The k-NN algorithm can be implemented in a few simple steps. First, the algorithm is trained

on a labeled dataset, which is used to determine the k-nearest neighbors for each observation

in the test dataset. Next, the algorithm makes predictions for each observation in the test dataset

based on the majority class of its k-nearest neighbors.

The k-NN algorithm is a non-parametric method that can be used for both classification and

regression tasks. In the context of fraud detection, the k-NN algorithm is used to identify

abnormal transactions by comparing them to a set of normal transactions. To implement the k-

NN algorithm for fraud detection, a labeled dataset of normal and fraudulent transactions is

first used to train the algorithm. Next, the algorithm is used to classify new transactions as

either normal or fraudulent based on the majority class of their k nearest neighbors in the

training dataset.

British Journal of Computer, Networking and Information Technology

ISSN: 2689-5315

Volume 7, Issue 3, 2024 (pp. 1-35)

12 Article DOI: 10.52589/BJCNIT-YDIJNXG2

 DOI URL: https://doi.org/10.52589/BJCNIT-YDIJNXG2

www.abjournals.org

The k-NN algorithm is a powerful tool for detecting credit card fraud, offering several

advantages over other machine learning techniques. However, it is important to carefully

consider the limitations of the k-NN algorithm and to select an appropriate value for k when

implementing this technique for fraud detection. Despite its limitations, the k-NN algorithm is

a promising approach for preventing financial losses and protecting consumers from credit card

fraud.

Ethical Considerations

Ethical considerations were taken into account during the research process for this study. The

dataset used for the study was obtained from a reputable source, and all personal identifying

information was removed from the dataset to protect the privacy of individuals. Additionally,

the study adhered to all ethical guidelines for research involving human subjects.

RESULTS/FINDINGS

Data Presentation

The data set has 30 features, which are the result of a principal component analysis (PCA)

transformation applied to the original data for confidentiality reasons. The only features that

have not been transformed are the time and amount of the transaction. The target variable is

the class, which is 1 for fraudulent transactions and 0 for normal transactions.

Figure 4: Statistical Summary of the Dataset

Before applying the machine learning algorithms, some exploratory data analysis (EDA) was

performed to understand the characteristics and distribution of the data. The following are some

of the findings from the EDA:

- The data set is highly imbalanced, as only 0.17% of the transactions are fraudulent. This poses

a challenge for the machine learning algorithms, as they may tend to classify most transactions

as normal and miss the fraudulent ones.

British Journal of Computer, Networking and Information Technology

ISSN: 2689-5315

Volume 7, Issue 3, 2024 (pp. 1-35)

13 Article DOI: 10.52589/BJCNIT-YDIJNXG2

 DOI URL: https://doi.org/10.52589/BJCNIT-YDIJNXG2

www.abjournals.org

Figure 5: Pie Chart Showing Fraudulent transactions and Non-Fraudulent Transactions

The time feature shows that the transactions are distributed over two days, with a peak around

10 hours on both days. There is no clear pattern or trend between the time and the class of the

transaction.

Figure 6: Histogram of the Time Feature

The histogram of time feature showed that the data is not normally distributed.

British Journal of Computer, Networking and Information Technology

ISSN: 2689-5315

Volume 7, Issue 3, 2024 (pp. 1-35)

14 Article DOI: 10.52589/BJCNIT-YDIJNXG2

 DOI URL: https://doi.org/10.52589/BJCNIT-YDIJNXG2

www.abjournals.org

Figure 7: Violin Box Plot of Time and Class

The amount feature shows that most transactions are small, with a median of 22.38 euros. The

fraudulent transactions tend to have higher amounts than normal transactions, with a median

of 122.21 euros. However, there are also some outliers in both classes, such as a normal

transaction of 25,691.16 euros and a fraudulent transaction of 2,125.87 euros.

British Journal of Computer, Networking and Information Technology

ISSN: 2689-5315

Volume 7, Issue 3, 2024 (pp. 1-35)

15 Article DOI: 10.52589/BJCNIT-YDIJNXG2

 DOI URL: https://doi.org/10.52589/BJCNIT-YDIJNXG2

www.abjournals.org

Figure 8: Histogram of Amount Feature

Figure 9: Chart of Amount Against Class

British Journal of Computer, Networking and Information Technology

ISSN: 2689-5315

Volume 7, Issue 3, 2024 (pp. 1-35)

16 Article DOI: 10.52589/BJCNIT-YDIJNXG2

 DOI URL: https://doi.org/10.52589/BJCNIT-YDIJNXG2

www.abjournals.org

The PCA features show that most of them have a standard normal distribution with a mean of

zero and a standard deviation of one. However, some features have skewed distributions or

outliers that may affect the performance of some algorithms.

Figure 10: Histogram of the PCA Features

The correlation matrix shows that most features have low or no correlation with each other or

with the class variable. However, some features have moderate or high correlation with each

other or with the class variable. For example, V3 has a negative correlation of -0.59 with the

class variable, V11 has a positive correlation of 0.69 with the class variable and V2 has a

positive correlation of 0.53 with V5.

British Journal of Computer, Networking and Information Technology

ISSN: 2689-5315

Volume 7, Issue 3, 2024 (pp. 1-35)

17 Article DOI: 10.52589/BJCNIT-YDIJNXG2

 DOI URL: https://doi.org/10.52589/BJCNIT-YDIJNXG2

www.abjournals.org

Figure 11: Correlation Matrix

Relationship Between Variables

To further explore the relationship between variables, some visualizations were created using

box plots.

The box plots show that most features have similar ranges and distributions for both classes.

However, some features show significant differences in their median or quartile values or in

their presence of outliers between classes. For example, V17 shows that fraudulent transactions

have lower median and quartile values than normal transactions, and V12 shows that fraudulent

British Journal of Computer, Networking and Information Technology

ISSN: 2689-5315

Volume 7, Issue 3, 2024 (pp. 1-35)

18 Article DOI: 10.52589/BJCNIT-YDIJNXG2

 DOI URL: https://doi.org/10.52589/BJCNIT-YDIJNXG2

www.abjournals.org

transactions have more outliers than normal transactions.

Figure 12: Box Plot of PCA Features

Based on these findings from the EDA, it can be concluded that:

- The data set is highly imbalanced and requires appropriate techniques to handle it.

- The time feature does not seem to have much influence on the class of the transaction.

- The amount feature may be useful to distinguish between normal and fraudulent transactions.

- The PCA features vary in their distribution and correlation with each other and with the class

variable.

- Some PCA features may be more relevant than others for detecting fraudulent transactions.

Performance Comparison of Machine Learning Algorithms

The data set was split into training and testing sets with a ratio of 80:20. The training set was

used to train the five algorithms and the testing set was used to evaluate their performance. The

performance metrics used for comparison are accuracy, precision, recall, F1-score and area

under the receiver operating characteristic curve (AUC-ROC). Accuracy measures the

British Journal of Computer, Networking and Information Technology

ISSN: 2689-5315

Volume 7, Issue 3, 2024 (pp. 1-35)

19 Article DOI: 10.52589/BJCNIT-YDIJNXG2

 DOI URL: https://doi.org/10.52589/BJCNIT-YDIJNXG2

www.abjournals.org

proportion of correctly classified transactions out of the total number of transactions. Precision

measures the proportion of correctly detected frauds out of the total number of detected frauds.

Recall measures the proportion of correctly detected frauds out of the total number of actual

frauds. F1-score is the harmonic mean of precision and recall, and it balances both metrics.

AUC-ROC measures the ability of the model to distinguish between fraudulent and non-

fraudulent transactions, regardless of the classification threshold. A higher AUC-ROC

indicates a better model.

The training set was used to train the models and tune their hyperparameters using grid search

and cross-validation techniques. The test set was used to evaluate the models on unseen data

and compare their performance. The data set was also resampled using synthetic minority

oversampling technique (SMOTE) to address the class imbalance problem. SMOTE creates

synthetic samples of the minority class (fraud) by finding its nearest neighbors and

interpolating new points along the line segments joining them. This way, SMOTE increases

the number of fraudulent transactions in the training set to match the number of non-fraudulent

transactions, while preserving the original distribution of the features.

Table 1: Summary of the performance metrics of each model on both original and

resampled data sets

Model Accuracy Precision Recall F1 Score AUC-ROC

Random Forest (original) 0.9996

0.9487 0.7959 0.8658 0.9796

Random Forest (resampled) 0.9995 0.8529 0.8469 0.8499 0.9858

k-Nearest Neighbor (original) 0.9983 0.0000 0.0000 0.0000 0.5000

k-Nearest Neighbor (resampled) 0.9978 0.0625 0.8469 0.1163 0.9225

Naive Bayes (original) 0.9778 0.0419 0.8469 0.0797 0.9125

Naive Bayes (resampled) 0.9734 0.0382 0.8776 0.0732 0.9257

Logistic Regression (original) 0.9992 0.8750 0.6122 0.7207 0.9784

Logistic Regression (resampled) 0.9761 0.0513 0.9184 0.0971 0.9474

Decision Trees (original) 0.9992 0.7879 0.7551 0.7711 0.8776

Decision Trees (resampled) 0.9974 0.1316 0.8163 0.2264 0.9071

 Table 3.1 Performance Metrics of Each Machine Learning Algorithm

British Journal of Computer, Networking and Information Technology

ISSN: 2689-5315

Volume 7, Issue 3, 2024 (pp. 1-35)

20 Article DOI: 10.52589/BJCNIT-YDIJNXG2

 DOI URL: https://doi.org/10.52589/BJCNIT-YDIJNXG2

www.abjournals.org

DISCUSSION

The results show that Random Forest is the best performing model among all, achieving high

scores in accuracy, precision, recall, F1 score and AUC-ROC.

It can be concluded that analysis of the credit card fraud detection system using machine

learning algorithms shows that Logistic Regression and Random Forest algorithms outperform

other algorithms in detecting credit card fraud. The correlation between variables shows that

the transaction amount is the most important variable in detecting credit card fraud. The

anonymized variables V1 to V28 have a low correlation with fraudulent transactions, indicating

that these variables may not be important in detecting credit card fraud. The results of this study

can be used to develop more effective credit card fraud detection systems.

CONCLUSION

This study examined the application of machine learning algorithms in the detection of credit

card fraud. Logistic regression, K-Nearest Neighbors, Random Forest, Decision Tree, and

Naive Bayes were used to develop models for the task as against three algorithms Logistic

regression, K-Nearest Neighbors and Random Forest used by (Singh et al., 2020). The other

two algorithms were added to show any significant variation in the performance of the features

considered. The results of the experiments showed that the Random Forest algorithm (original

or resampled) is the most effective algorithm for credit card fraud detection, followed by the

Logistic Regression algorithm (resampled). However, it is essential to note that the

performance of each algorithm is dependent on the preprocessing and feature engineering

techniques applied to the dataset.

Machine learning algorithms are an effective tool for detecting credit card fraud based on

transaction data. They have the potential to significantly reduce the impact of credit card fraud.

Different machine learning algorithms have different strengths and weaknesses in dealing with

imbalanced data, high dimensionality and non-linearity. Random Forest is the most suitable

algorithm for credit card fraud detection among the five algorithms tested in this study.

FUTURE RESEARCH

This method can further be used in other sectors like agricultural science, life sciences and

engineering to predict the best algorithm for detection of best crop yield combination, best drug

dosage combination for treatment of sick animals and best combination of engineering

materials for the construction of say buildings, respectively.

British Journal of Computer, Networking and Information Technology

ISSN: 2689-5315

Volume 7, Issue 3, 2024 (pp. 1-35)

21 Article DOI: 10.52589/BJCNIT-YDIJNXG2

 DOI URL: https://doi.org/10.52589/BJCNIT-YDIJNXG2

www.abjournals.org

REFERENCES

Abdallah, A., Maarof, M. A., & Zainal, A. (2016). Fraud detection system: A survey. Journal

of Network and Computer Applications, 68, 90-113.

Bolton, R. J., & Hand, D. J. (2002). Statistical fraud detection: A review. Statistical Science,

17(3), 235-249.

Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: Synthetic

Minority over-Sampling Technique. Journal of Artificial Intelligence Research, 16, 321-357.

Dal Pozzolo, A., Caelen, O., Le Borgne, Y.A., Waterschoot, S., & Bontempi, G. (2015).

Learned lessons in credit card fraud detection from a practitioner perspective. Expert Systems

with Applications, 41(10), 4915-4928.

Enrique, A.D.(2020). Random Forest Machine Learning Model Implementation on Detecting

Fraudulent Credit Cards. Makalah IF2120 Matematika Diskrit – Sem

Hassan, M. H. and Al-Amin, M. A. (2019). A Comparative Study of Machine Learning

Algorithms for Credit Card Fraud Detection. IEEE Access

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical

learning:

With applications in R. Springer.

Kaggle: Credit Card Fraud Detection Dataset https://www.kaggle.com/datasets/mlg-

ulb/creditcardfraud

Kim J. and Lee Y. (2019). Machine Learning for Credit Card Fraud Detection. Journal of

Information Processing Systems.

Kirkos, E., Spathis, C., & Manolopoulos, Y. (2007). Data mining techniques for the detection

of fraudulent financial statements. Expert Systems with Applications, 32(4), 995-1003.

Kotsiantis, S., Zaharakis, I., & Pintelas, P. (2007). Supervised machine learning: A review of

classification techniques. Informatica (Slovenia), 31(3), 249-268.

Liu, Y., & Zhou, Z.-H. (2006). The influence of class imbalance on cost-sensitive learning: An

empirical study. In Proceedings of the Sixth International Conference on Data Mining

(pp. 970-974). IEEE.

Ngai E.W.T., Hu Y., Wong Y.H., Chen Y., & Sun X.(2011). The application of data mining

techniques in financial fraud detection: A classification framework and an academic review of

literature. Decision Support Systems ,50(3),559–569.

Phua C., Lee V.C.S., Smith K., & Gayler R.(2010). A comprehensive survey of data mining-

based fraud detection research. Artificial Intelligence Review ,14(1),1–14.

Russell S.J., & Norvig P.(2010). Artificial intelligence: A modern approach (3rd ed.). Pearson

Education.

Sahin Y., & Duman E.(2011). Detecting credit card fraud by decision trees and support vector

Machines. Proceedings of International Multi-conference of Engineers and Computer Scientist

Munich Personal RePEc Archive Paper No .35865.

Shashank Singh 2Meeenu Grag (2021): Credit Card Fraud Detection System. International

Journal of creative research thoughts, 9(6), 312-316

Singh M., (2020). A Comparative Study of Machine Learning Algorithms for Credit Card

Fraud

Detection. IEEE Symposium Series on Computational Intelligence (SSCI)

Srivastava A.N., Kundu A., Sural S., & Majumdar A.(2008). Credit card fraud detection using

hidden Markov model. IEEE Transactions on Dependable and Secure Computing ,5(1),37–48.

West J.(2008). Data mining for computer security.In C.C.Agarwal & H.Wang (Eds.),

Managing

https://www.kaggle.com/datasets/mlg-

British Journal of Computer, Networking and Information Technology

ISSN: 2689-5315

Volume 7, Issue 3, 2024 (pp. 1-35)

22 Article DOI: 10.52589/BJCNIT-YDIJNXG2

 DOI URL: https://doi.org/10.52589/BJCNIT-YDIJNXG2

www.abjournals.org

and mining graph data (pp .289–314). Springer

STAT Library powered by NICE CXone Export and are supported by the Department of

Education

Open Textbook Pilot Project, the UC Davis office of the Provost, the UC Davis Library, the

California State University Affordable Learning Solutions Program, and Merlot

Imposter Scams Top Complaints Made to FTC in 2018 | Federal Trade Commission

APPENDIX

R Source File

#installing packages

install.packages("tidyverse")

install.packages("caret")

install.packages("ROSE")

install.packages("dplyr")

install.packages("ggplot2")

install.packages("glm2")

install.packages("pROC")

install.packages("corrplot")

install.packages("readr")

install.packages("tidyr")

install.packages("ROCR")

install.packages("glmnet")

install.packages("caretEnsemble")

install.packages("data.table")

install.packages("ggcorrplot")

#reading data

library(readr)

creditcard <- read.csv(file="creditcard.csv")

View(creditcard)

https://www.ftc.gov/news-events/news/press-releases/2019/02/imposter-scams-top-complaints-made-ftc-2018

British Journal of Computer, Networking and Information Technology

ISSN: 2689-5315

Volume 7, Issue 3, 2024 (pp. 1-35)

23 Article DOI: 10.52589/BJCNIT-YDIJNXG2

 DOI URL: https://doi.org/10.52589/BJCNIT-YDIJNXG2

www.abjournals.org

#Exploratory Data Analysis

library(data.table)

library(ggplot2)

library(reshape2)

library(dplyr)

library(GGally) # for scatterplot matrix

str(creditcard) #data structure

dim(creditcard) #dimension

summary(creditcard) # provides summary statistics for all columns

glimpse(creditcard) # look at the data

names(creditcard) #

head(creditcard)

tail(creditcard)

data.table(creditcard)

sapply(creditcard, sd) # calculates standard deviation for all columns

sapply(creditcard, var) # calculates variance for all columns

creditcard$Class = as.factor(creditcard$Class) # make Class a factor

summary(creditcard$Class) #provides summary statistics for the Class column

table(creditcard$class) #checking Class imbalance

summary(creditcard$Amount) #provides summary statistics for the Amount column

sd(creditcard$Amount)

IQR(creditcard$Amount) #interquartile range

var(creditcard$Amount)

ggplot(creditcard, aes(x = Class, y = Amount)) + geom_boxplot() #boxplot of Class and

Amount

ggplot(creditcard, aes(x = Class, fill = Class)) + geom_bar() #bar plot of Class

ggplot(creditcard, aes(x = V1)) + geom_histogram(binwidth = 0.5, fill = "steelblue", color =

"white") #v1 histogram

British Journal of Computer, Networking and Information Technology

ISSN: 2689-5315

Volume 7, Issue 3, 2024 (pp. 1-35)

24 Article DOI: 10.52589/BJCNIT-YDIJNXG2

 DOI URL: https://doi.org/10.52589/BJCNIT-YDIJNXG2

www.abjournals.org

ggplot(creditcard, aes(x = V1)) + geom_density(fill = "steelblue", alpha = 0.5) #v1 density plot

ggplot(creditcard, aes(x = Class, y = V1, fill = Class)) + geom_tile() #v1 heatmap

ggplot(creditcard, aes(x = V2)) + geom_histogram(binwidth = 0.5, fill = "steelblue", color =

"white") #v2 histogram

ggplot(creditcard, aes(x = V2)) + geom_density(fill = "steelblue", alpha = 0.5) #v2 density plot

ggplot(creditcard, aes(x = Class, y = V2, fill = Class)) + geom_tile() #v2 heatmap

ggplot(creditcard, aes(x = V3)) + geom_histogram(binwidth = 0.5, fill = "steelblue", color =

"white") #v3 histogram

ggplot(creditcard, aes(x = V3)) + geom_density(fill = "steelblue", alpha = 0.5) #v3 density plot

ggplot(creditcard, aes(x = Class, y = V3, fill = Class)) + geom_tile() #v3 heatmap

ggplot(creditcard, aes(x = V4)) + geom_histogram(binwidth = 0.5, fill = "steelblue", color =

"white") #v4 histogram

ggplot(creditcard, aes(x = V4)) + geom_density(fill = "steelblue", alpha = 0.5) #v4 density plot

ggplot(creditcard, aes(x = Class, y = V4, fill = Class)) + geom_tile() #v4 heatmap

ggplot(creditcard, aes(x = V5)) + geom_histogram(binwidth = 0.5, fill = "steelblue", color =

"white") #v5 histogram

ggplot(creditcard, aes(x = V5)) + geom_density(fill = "steelblue", alpha = 0.5) #v5 density plot

ggplot(creditcard, aes(x = Class, y = V5, fill = Class)) + geom_tile() #v5 heatmap

ggplot(creditcard, aes(x = V6)) + geom_histogram(binwidth = 0.5, fill = "steelblue", color =

"white") #v6 histogram

ggplot(creditcard, aes(x = V6)) + geom_density(fill = "steelblue", alpha = 0.5) #v6 density plot

ggplot(creditcard, aes(x = Class, y = V6, fill = Class)) + geom_tile() #v6 heatmap

ggplot(creditcard, aes(x = V7)) + geom_histogram(binwidth = 0.5, fill = "steelblue", color =

"white") #v7 histogram

ggplot(creditcard, aes(x = V7)) + geom_density(fill = "steelblue", alpha = 0.5) #v7 density plot

ggplot(creditcard, aes(x = Class, y = V7, fill = Class)) + geom_tile() #v7 heatmap

ggplot(creditcard, aes(x = V8)) + geom_histogram(binwidth = 0.5, fill = "steelblue", color =

"white") #v8 histogram

ggplot(creditcard, aes(x = V8)) + geom_density(fill = "steelblue", alpha = 0.5) #v8 density plot

ggplot(creditcard, aes(x = Class, y = V8, fill = Class)) + geom_tile() #v8 heatmap

British Journal of Computer, Networking and Information Technology

ISSN: 2689-5315

Volume 7, Issue 3, 2024 (pp. 1-35)

25 Article DOI: 10.52589/BJCNIT-YDIJNXG2

 DOI URL: https://doi.org/10.52589/BJCNIT-YDIJNXG2

www.abjournals.org

ggplot(creditcard, aes(x = V9)) + geom_histogram(binwidth = 0.5, fill = "steelblue", color =

"white") #v9 histogram

ggplot(creditcard, aes(x = V9)) + geom_density(fill = "steelblue", alpha = 0.5) #v9 density plot

ggplot(creditcard, aes(x = Class, y = V9, fill = Class)) + geom_tile() #v9 heatmap

ggplot(creditcard, aes(x = V10)) + geom_histogram(binwidth = 0.5, fill = "steelblue", color =

"white") #v10 histogram

ggplot(creditcard, aes(x = V10)) + geom_density(fill = "steelblue", alpha = 0.5) #v10 density

plot

ggplot(creditcard, aes(x = Class, y = V10, fill = Class)) + geom_tile() #v10 heatmap

ggplot(creditcard, aes(x = V11)) + geom_histogram(binwidth = 0.5, fill = "steelblue", color =

"white") #v11 histogram

ggplot(creditcard, aes(x = V11)) + geom_density(fill = "steelblue", alpha = 0.5) #v11 density

plot

ggplot(creditcard, aes(x = Class, y = V11, fill = Class)) + geom_tile() #v11 heatmap

ggplot(creditcard, aes(x = V12)) + geom_histogram(binwidth = 0.5, fill = "steelblue", color =

"white") #v12 histogram

ggplot(creditcard, aes(x = V12)) + geom_density(fill = "steelblue", alpha = 0.5) #v12 density

plot

ggplot(creditcard, aes(x = Class, y = V12, fill = Class)) + geom_tile() #v12 heatmap

ggplot(creditcard, aes(x = V13)) + geom_histogram(binwidth = 0.5, fill = "steelblue", color =

"white") #v13 histogram

ggplot(creditcard, aes(x = V13)) + geom_density(fill = "steelblue", alpha = 0.5) #v13 density

plot

ggplot(creditcard, aes(x = Class, y = V13, fill = Class)) + geom_tile() #v13 heatmap

ggplot(creditcard, aes(x = V14)) + geom_histogram(binwidth = 0.5, fill = "steelblue", color =

"white") #v14 histogram

ggplot(creditcard, aes(x = V14)) + geom_density(fill = "steelblue", alpha = 0.5) #v14 density

plot

ggplot(creditcard, aes(x = Class, y = V14, fill = Class)) + geom_tile() #v14 heatmap

ggplot(creditcard, aes(x = V15)) + geom_histogram(binwidth = 0.5, fill = "steelblue", color =

"white") #v15 histogram

ggplot(creditcard, aes(x = V15)) + geom_density(fill = "steelblue", alpha = 0.5) #v15 density

plot

British Journal of Computer, Networking and Information Technology

ISSN: 2689-5315

Volume 7, Issue 3, 2024 (pp. 1-35)

26 Article DOI: 10.52589/BJCNIT-YDIJNXG2

 DOI URL: https://doi.org/10.52589/BJCNIT-YDIJNXG2

www.abjournals.org

ggplot(creditcard, aes(x = Class, y = V15, fill = Class)) + geom_tile() #v15 heatmap

ggplot(creditcard, aes(x = V16)) + geom_histogram(binwidth = 0.5, fill = "steelblue", color =

"white") #v16 histogram

ggplot(creditcard, aes(x = V16)) + geom_density(fill = "steelblue", alpha = 0.5) #v16 density

plot

ggplot(creditcard, aes(x = Class, y = V16, fill = Class)) + geom_tile() #v16 heatmap

ggplot(creditcard, aes(x = V17)) + geom_histogram(binwidth = 0.5, fill = "steelblue", color =

"white") #v17 histogram

ggplot(creditcard, aes(x = V17)) + geom_density(fill = "steelblue", alpha = 0.5) #v17 density

plot

ggplot(creditcard, aes(x = Class, y = V17, fill = Class)) + geom_tile() #v17 heatmap

ggplot(creditcard, aes(x = V18)) + geom_histogram(binwidth = 0.5, fill = "steelblue", color =

"white") #v18 histogram

ggplot(creditcard, aes(x = V18)) + geom_density(fill = "steelblue", alpha = 0.5) #v18 density

plot

ggplot(creditcard, aes(x = Class, y = V18, fill = Class)) + geom_tile() #v18 heatmap

ggplot(creditcard, aes(x = V19)) + geom_histogram(binwidth = 0.5, fill = "steelblue", color =

"white") #v19 histogram

ggplot(creditcard, aes(x = V19)) + geom_density(fill = "steelblue", alpha = 0.5) #v19 density

plot

ggplot(creditcard, aes(x = Class, y = V19, fill = Class)) + geom_tile() #v19 heatmap

ggplot(creditcard, aes(x = V20)) + geom_histogram(binwidth = 0.5, fill = "steelblue", color =

"white") #v20 histogram

ggplot(creditcard, aes(x = V20)) + geom_density(fill = "steelblue", alpha = 0.5) #v20 density

plot

ggplot(creditcard, aes(x = Class, y = V20, fill = Class)) + geom_tile() #v20 heatmap

ggplot(creditcard, aes(x = V21)) + geom_histogram(binwidth = 0.5, fill = "steelblue", color =

"white") #v21 histogram

ggplot(creditcard, aes(x = V21)) + geom_density(fill = "steelblue", alpha = 0.5) #v21 density

plot

ggplot(creditcard, aes(x = Class, y = V21, fill = Class)) + geom_tile() #v21 heatmap

ggplot(creditcard, aes(x = V22)) + geom_histogram(binwidth = 0.5, fill = "steelblue", color =

"white") #v22 histogram

British Journal of Computer, Networking and Information Technology

ISSN: 2689-5315

Volume 7, Issue 3, 2024 (pp. 1-35)

27 Article DOI: 10.52589/BJCNIT-YDIJNXG2

 DOI URL: https://doi.org/10.52589/BJCNIT-YDIJNXG2

www.abjournals.org

ggplot(creditcard, aes(x = V22)) + geom_density(fill = "steelblue", alpha = 0.5) #v22 density

plot

ggplot(creditcard, aes(x = Class, y = V22, fill = Class)) + geom_tile() #v22 heatmap

ggplot(creditcard, aes(x = V23)) + geom_histogram(binwidth = 0.5, fill = "steelblue", color =

"white") #v23 histogram

ggplot(creditcard, aes(x = V23)) + geom_density(fill = "steelblue", alpha = 0.5) #v23 density

plot

ggplot(creditcard, aes(x = Class, y = V23, fill = Class)) + geom_tile() #v23 heatmap

ggplot(creditcard, aes(x = V24)) + geom_histogram(binwidth = 0.5, fill = "steelblue", color =

"white") #v24 histogram

ggplot(creditcard, aes(x = V24)) + geom_density(fill = "steelblue", alpha = 0.5) #v24 density

plot

ggplot(creditcard, aes(x = Class, y = V24, fill = Class)) + geom_tile() #v24 heatmap

ggplot(creditcard, aes(x = V25)) + geom_histogram(binwidth = 0.5, fill = "steelblue", color =

"white") #v25 histogram

ggplot(creditcard, aes(x = V25)) + geom_density(fill = "steelblue", alpha = 0.5) #v25 density

plot

ggplot(creditcard, aes(x = Class, y = V25, fill = Class)) + geom_tile() #v25 heatmap

ggplot(creditcard, aes(x = V26)) + geom_histogram(binwidth = 0.5, fill = "steelblue", color =

"white") #v26 histogram

ggplot(creditcard, aes(x = V26)) + geom_density(fill = "steelblue", alpha = 0.5) #v26 density

plot

ggplot(creditcard, aes(x = Class, y = V26, fill = Class)) + geom_tile() #v26 heatmap

ggplot(creditcard, aes(x = V27)) + geom_histogram(binwidth = 0.5, fill = "steelblue", color =

"white") #v27 histogram

ggplot(creditcard, aes(x = V27)) + geom_density(fill = "steelblue", alpha = 0.5) #v27 density

plot

ggplot(creditcard, aes(x = Class, y = V27, fill = Class)) + geom_tile() #v27 heatmap

ggplot(creditcard, aes(x = V28)) + geom_histogram(binwidth = 0.5, fill = "steelblue", color =

"white") #v28 histogram

ggplot(creditcard, aes(x = V28)) + geom_density(fill = "steelblue", alpha = 0.5) #v28 density

plot

ggplot(creditcard, aes(x = Class, y = V28, fill = Class)) + geom_tile() #v28 heatmap

British Journal of Computer, Networking and Information Technology

ISSN: 2689-5315

Volume 7, Issue 3, 2024 (pp. 1-35)

28 Article DOI: 10.52589/BJCNIT-YDIJNXG2

 DOI URL: https://doi.org/10.52589/BJCNIT-YDIJNXG2

www.abjournals.org

#Visualing Fraud Vs Mon-Fraud

fraudcounts <- table(creditcard$Class) # Count the number of frauds and non-frauds

Create a data frame with the counts and labels

frauddata <- data.frame(

 fraud = c("Non-fraud", "Fraud"),

 count = c(fraudcounts[1], fraudcounts[2])

)

Create a pie chart

ggplot(frauddata, aes(x = "", y = count, fill = fraud)) +

 geom_bar(width = 1, stat = "identity") +

 coord_polar(theta = "y") +

 labs(title = "Credit Card Fraud Detection", fill = "") +

 theme_void()

#Visualizing Physical Features

physically_imp_features <- c("Time", "Amount", "V1", "V2", "V3") # Select the physically

important features

creditcardsubset <- creditcard[, c(physically_imp_features, "Class")] # Subset the data frame

to include only the important features and the fraud flag

creditcardmelt <- melt(creditcardsubset, id.vars = "Class") # Melt the data frame to long format

Create a heatmap

ggplot(creditcardmelt, aes(x = variable, y = Class, fill = value)) +

 geom_tile() +

 scale_fill_gradient(low = "white", high = "red") +

 facet_wrap(~Class) +

 theme(axis.text.x = element_text(angle = 90, vjust = 0.5))

pairs(creditcard) #scatterplot

ggpairs(creditcard)

#Data Preprocessing

British Journal of Computer, Networking and Information Technology

ISSN: 2689-5315

Volume 7, Issue 3, 2024 (pp. 1-35)

29 Article DOI: 10.52589/BJCNIT-YDIJNXG2

 DOI URL: https://doi.org/10.52589/BJCNIT-YDIJNXG2

www.abjournals.org

library(caret)

library(dplyr)

library(tidyr)

library(mice)

library(tidyverse)

library(ROSE)

library(DMwR2)

library(smotefamily)

creditcard <- creditcard %>%

 select(-Time) %>% # removing the time column

 mutate_if(is.character, as.factor) %>% # converting character columns to factors

 mutate_all(funs(ifelse(is.na(.), median(., na.rm=TRUE), .))) # handling missing values by

imputing with median

creditcard$Class <- as.numeric(creditcard$Class == "fraud") # Encode categorical variables

creditcard[,1:29] <- scale(creditcard[,1:29]) # Standardize numerical variables

boxplot(creditcard) # Remove outliers

creditcard <- creditcard %>%

 filter(creditcard$Amount > -3 & creditcard$Amount < 3)

creditcard <- creditcard %>% # Balancing Using Smote

 mutate(Class = as.factor(Class))

set.seed(123)

creditcard$Class = factor(creditcard$Class)

creditcard_balanced <- SMOTE(creditcard[,1:29], creditcard$Class, K = 5)

Feature Selection

library(caret)

library(caretEnsemble)

library(e1071)

British Journal of Computer, Networking and Information Technology

ISSN: 2689-5315

Volume 7, Issue 3, 2024 (pp. 1-35)

30 Article DOI: 10.52589/BJCNIT-YDIJNXG2

 DOI URL: https://doi.org/10.52589/BJCNIT-YDIJNXG2

www.abjournals.org

library(corrplot)

library(ggplot2)

library(ggcorrplot)

library(caTools)

Correlation analysis

correlations <- cor(creditcard[, -31]) #correlation matrix

corrplot::corrplot(correlations, type = "upper", order = "hclust")

corrplot(correlations, method = "circle") #correlation plot

Mutual Information Feature Selection

mi <- information.gain(Class ~ ., creditcard_balanced)

mi <- mi[order(-mi),]

top_features <- names(mi)[1:10]

creditcard <- creditcard_balanced[, c("Class", top_features)]

#chi-square test

chisq_test <- chisq.test(creditcard[, -31], creditcard$Class)

p_values <- chisq_test$p.value

significant_features <- names(which(p_values < 0.05))

creditcard <- creditcard[, c("Class", significant_features)]

Recursive Feature Elimination

control <- rfeControl(method = "cv", number = 5)

model <- rfe(creditcard[, -31], creditcard$Class, sizes = c(1:5), rfeControl = control)

selected_features <- predict(model, creditcard[, -31])

creditcard <- creditcard[, c("Class", colnames(creditcard[, -31])[selected_features])]

Splitting the Data into Training & Testing Sets

set.seed(123)

train_index <- createDataPartition(y = creditcard$Class, p = 0.7, list = FALSE)

creditcard_train <- creditcard[train_index,]

credicard_test <- creditcard[-train_index,]

British Journal of Computer, Networking and Information Technology

ISSN: 2689-5315

Volume 7, Issue 3, 2024 (pp. 1-35)

31 Article DOI: 10.52589/BJCNIT-YDIJNXG2

 DOI URL: https://doi.org/10.52589/BJCNIT-YDIJNXG2

www.abjournals.org

dim(creditcard_train)

dim(creditcard_test)

selected_features <- grep("^V", names(creditcard_train), value =

TRUE)[rfe_model$optVariables] #Select features

#Plot features

ggplot(creditcard_train, aes(x = selected_features, y = Class)) +

 geom_boxplot() +

 stat_summary(fun.y = mean, geom = "point")

cor(creditcard_train[selected_features], train_data$Class, use = "pairwise.complete.obs")

#Check correlation

Logistic Regression

library(glm2)

library(glmnet)

library(pROC)

log_model <- glm(Class ~ ., data = creditcard_train, family = "binomial") #fit the logistic

regression model

summary(lr_model) #provides summary statistics of the logistic regression model

plot(lr_model) #plots the regression model

Predict on Test Data

X_test <- creditcard_test %>% select(-Class)

y_test <- creditcard_test$Class

creditcard_test$Class <- predict(lr_model, newdata = creditcard_test, probabilty = TRUE)

Model Evaluation

library(pROC)

library(caret)

conf_mat <- confusionMatrix(pred, y_test) # confusion matrix

conf_mat$table

roc_curve <- roc(y_test, pred) # roc curve

British Journal of Computer, Networking and Information Technology

ISSN: 2689-5315

Volume 7, Issue 3, 2024 (pp. 1-35)

32 Article DOI: 10.52589/BJCNIT-YDIJNXG2

 DOI URL: https://doi.org/10.52589/BJCNIT-YDIJNXG2

www.abjournals.org

auc <- auc(roc_curve) #auc

plot(roc_curve, main = paste("ROC Curve (AUC =", round(auc, 3), ")"))

#Random Forest

Fit a random forest model

rf_model <- randomForest(Class ~ ., data = creditcard_train, ntree = 100, mtry = 5)

Predict on the test data

predictions <- predict(rf_model, newdata = creditcard_test)

Evaluate the model using F1 score, accuracy, precision, recall, AUC, and ROC

f1_score <- F1_Score(predictions, creditcard_test$Class)

accuracy <- confusionMatrix(predictions, creditcard_test$Class)$overall["Accuracy"]

precision <- confusionMatrix(predictions, creditcard_test$Class)$byClass["Precision"]

recall <- confusionMatrix(predictions, creditcard_test$Class)$byClass["Recall"]

auc <- as.numeric(performance(prediction(predictions, creditcard_test$Class),

"auc")@y.values)

roc <- plot(performance(prediction(predictions, creditcard_test$Class), "tpr", "fpr"), main =

"ROC Curve for Random Forest Model")

Print the evaluation metrics

cat("F1 Score: ", f1_score, "\n")

cat("Accuracy: ", accuracy, "\n")

cat("Precision: ", precision, "\n")

cat("Recall: ", recall, "\n")

cat("AUC: ", auc, "\n")

Save the ROC plot as an image file

png("roc_plot.png")

print(roc)

dev.off()

#Naive Bayes

British Journal of Computer, Networking and Information Technology

ISSN: 2689-5315

Volume 7, Issue 3, 2024 (pp. 1-35)

33 Article DOI: 10.52589/BJCNIT-YDIJNXG2

 DOI URL: https://doi.org/10.52589/BJCNIT-YDIJNXG2

www.abjournals.org

Fit a Naive Bayes model

nb_model <- naiveBayes(Class ~ ., data = creditcard_train)

Predict on the test data

predictions <- predict(nb_model, newdata = creditcard_test)

Evaluate the model using F1 score, accuracy, precision, recall, AUC, and ROC

f1_score <- F1_Score(predictions, creditcard_test$Class)

accuracy <- confusionMatrix(predictions, creditcard_test$Class)$overall["Accuracy"]

precision <- confusionMatrix(predictions, creditcard_test$Class)$byClass["Precision"]

recall <- confusionMatrix(predictions, creditcard_test$Class)$byClass["Recall"]

auc <- as.numeric(performance(prediction(predictions, creditcard_test$Class),

"auc")@y.values)

roc <- plot(performance(prediction(predictions, creditcard_test$Class), "tpr", "fpr"), main =

"ROC Curve for Naive Bayes Model")

Print the evaluation metrics

cat("F1 Score: ", f1_score, "\n")

cat("Accuracy: ", accuracy, "\n")

cat("Precision: ", precision, "\n")

cat("Recall: ", recall, "\n")

cat("AUC: ", auc, "\n")

Save the ROC plot as an image file

png("roc_plot.png")

print(roc)

dev.off()

#Decision Trees

Fit a decision tree model

dt_model <- rpart(Class ~ ., data = train, method = "class")

Predict on the test data

predictions <- predict(dt_model, newdata = test, type = "class")

British Journal of Computer, Networking and Information Technology

ISSN: 2689-5315

Volume 7, Issue 3, 2024 (pp. 1-35)

34 Article DOI: 10.52589/BJCNIT-YDIJNXG2

 DOI URL: https://doi.org/10.52589/BJCNIT-YDIJNXG2

www.abjournals.org

Evaluate the model using F1 score, accuracy, precision, recall, AUC, and ROC

f1_score <- F1_Score(predictions, test$Class)

accuracy <- confusionMatrix(predictions, creditcard_test$Class)$overall["Accuracy"]

precision <- confusionMatrix(predictions, creditcard_test$Class)$byClass["Precision"]

recall <- confusionMatrix(predictions, creditcard_test$Class)$byClass["Recall"]

auc <- as.numeric(performance(prediction(predictions, creditcard_test$Class),

"auc")@y.values)

roc <- plot(performance(prediction(predictions, creditcard_test$Class), "tpr", "fpr"), main =

"ROC Curve for Decision Tree Model")

Print the evaluation metrics

cat("F1 Score: ", f1_score, "\n")

cat("Accuracy: ", accuracy, "\n")

cat("Precision: ", precision, "\n")

cat("Recall: ", recall, "\n")

cat("AUC: ", auc, "\n")

Plot the decision tree

rpart.plot(dt_model)

Save the ROC plot as an image file

png("roc_plot.png")

print(roc)

dev.off()

#k-Nearest Neighbours

Fit a k-nearest neighbors model

knn_model <- knn(train[, -31], test[, -31], train$Class, k = 5)

Predict on the test data

predictions <- as.numeric(knn_model)

British Journal of Computer, Networking and Information Technology

ISSN: 2689-5315

Volume 7, Issue 3, 2024 (pp. 1-35)

35 Article DOI: 10.52589/BJCNIT-YDIJNXG2

 DOI URL: https://doi.org/10.52589/BJCNIT-YDIJNXG2

www.abjournals.org

Evaluate the model using F1 score, accuracy, precision, recall, AUC, and ROC

f1_score <- F1_Score(predictions, creditcard_test$Class)

accuracy <- confusionMatrix(predictions, creditcard_test$Class)$overall["Accuracy"]

precision <- confusionMatrix(predictions, creditcard_test$Class)$byClass["Precision"]

recall <- confusionMatrix(predictions, creditcard_test$Class)$byClass["Recall"]

auc <- as.numeric(performance(prediction(predictions, creditcard_test$Class),

"auc")@y.values)

roc <- plot(performance(prediction(predictions, creditcard_test$Class), "tpr", "fpr"), main =

"ROC Curve for KNN Model")

Print the evaluation metrics

cat("F1 Score: ", f1_score, "\n")

cat("Accuracy: ", accuracy, "\n")

cat("Precision: ", precision, "\n")

cat("Recall: ", recall, "\n")

cat("AUC: ", auc, "\n")

Save the ROC plot as an image file

png("roc_plot.png")

print(roc)

dev.off()

