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ABSTRACT: The increasing use of credit cards in various 

transactions has resulted in an upsurge in fraudulent activities. 

This has caused significant financial losses for both individuals 

and businesses. This research attempted to focus on developing an 

efficient credit card fraud detection system using machine 

learning algorithms. Specifically, the Random Forest, Logistic 

Regression, K-nearest neighbours, Decision Trees, and naive 

Bayes algorithms were used to analyze the dataset and predict 

fraudulent activities. The dataset was preprocessed, and feature 

engineering techniques were applied to improve the performance 

of the models. Experimental results show that the Random Forest 

algorithm outperformed other models with an accuracy rate of 

99.95%, precision of 0.85%, and recall of 0.85%. These findings 

indicate the potential of using machine learning algorithms in 

detecting credit card fraud, and the proposed system could be 

implemented in financial institutions and payment processing 

companies to improve their fraud detection systems. 

KEYWORDS: K-nearest neighbors, Machine Learning, Credit 

Card, Random Forest, Logistic Regression, Decision Tree and 

Bayes Algorithms. 
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INTRODUCTION 

Credit card fraud is a type of financial crime that involves the unauthorized use of someone 

else's credit card to make purchases or withdraw funds (Abdallah, 2016). This type of fraud 

can be committed in a number of ways, including online, over the phone, or in person. It can 

cause significant financial loss and damage to the victim's credit score and reputation.  

In Nigeria, credit card fraud is a severe problem that has gotten worse over the past few years. 

Over 5,000 instances of credit card theft were detected in Nigeria in 2018, according to a report 

by the Central Bank of Nigeria (CBN). In 2019, this number increased to over 10,000, and it is 

anticipated that it will continue to increase in years to come (2018-2022, CBN). 

According to Federal Trade Commission in 2017 (FTC 2018), there were 1,579 data breaches 

and nearly 179 million records among which credit card frauds were the most common form 

with 133,015 reports, then employment or tax-related fraud with 82,015 reports, phone fraud 

with 55,045 reports, followed by bank frauds with 50,517. A credit card is a type of payment 

card that allows users to make purchases without using cash. Instead of paying for a purchase 

with cash, the user can borrow money from the credit card issuer to pay for the purchase. The 

user is then required to pay back the borrowed amount, plus interest, at a later date (Shashank, 

2021). 

According to (Dal Pozzolo et al., 2015), a credit score is a numerical representation of an 

individual's creditworthiness. It is based on a variety of factors, including the individual's credit 

history, outstanding debts, and credit utilization. Credit scores are typically used by lenders 

and other financial institutions to assess an individual's risk as a borrower. A higher credit score 

indicates that an individual is more likely to repay their debts on time, while a lower credit 

score indicates a higher risk of default. As a result, individuals with higher credit scores may 

be able to borrow money at more favorable rates, while those with lower credit scores may be 

charged higher interest rates or may be denied credit altogether. 

 

LITERATURE/THEORETICAL UNDERPINNING 

One of the most common ways that credit card fraud is committed is through skimming 

(Kirkos, 2007), which involves attaching a device to a card reader, such as an ATM or gas 

pump, to capture the information on the magnetic strip of a credit card. The stolen information 

can then be used to make unauthorized transactions, create counterfeit cards or sell the data on 

the black market.  

Another way that credit card fraud can be committed is through phishing, which involves 

tricking individuals into revealing their credit card information through fake emails or websites. 

These scams often use official-looking logos and language to make the victim believe that they 

are providing their information to a legitimate source (Phua, 2010). The thief can then use this 

information to make unauthorized purchases or withdraw money from the cardholder's account. 

Credit card fraud has been on the rise in recent years, with reports estimating that the global 

cost of this type of crime reached $32 billion in 2018. As the use of credit cards becomes more 

widespread, it becomes increasingly important for individuals and businesses to understand the 

risks and know how to detect and prevent credit card fraud. 
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Based on findings by Bolton and Hand (2002) and Singh and Grag (2021), traditional methods 

to manually detect fraudulent transactions are time consuming and inefficient. Therefore, 

advancement in big data has rendered manual methods unrealizable. Hence, recent 

computational methodology has been the target of financial institutions to handle credit card 

fraud challenges. 

These financial institutions and credit card companies can devise several means to investigate 

and prevent credit card frauds (Liu, 2006). One method is through the use of fraud detection 

software, which analyses transactions for suspicious activity and flags them for further review. 

Another method is through the use of machine learning algorithms, which can be trained to 

recognize patterns in credit card usage and identify potential fraud. Credit card companies may 

employ human analysts who manually review flagged transactions to determine if they are 

fraudulent. They may also use data from credit bureaus and other sources to identify potentially 

fraudulent activities. Machine learning is a type of artificial intelligence that allows computers 

to learn from data and make predictions or decisions without being explicitly programmed to 

do so. It involves the use of algorithms that can analyse large amounts of data and identify 

patterns or trends that may be indicative of fraudulent activity.  

One way that machine learning can be used to detect credit card fraud is through the use of 

anomaly detection algorithms. These algorithms are trained on large amounts of data that 

include both fraudulent and non-fraudulent transactions. The algorithm looks for patterns in 

the data that are unusual or unexpected, and flags these transactions as potentially fraudulent. 

Another way that machine learning can be used to detect credit card fraud is through the use of 

predictive modelling. This involves training a machine learning model on historical data that 

includes both fraudulent and non-fraudulent transactions. The model then uses this information 

to make predictions about future transactions, and can flag transactions that are likely to be 

fraudulent. In addition to detecting credit card fraud, machine learning can also be used to 

prevent it. This, for example, is found in some credit card companies that use machine learning 

algorithms to monitor customer behaviour and identify unusual or suspicious activities. If the 

algorithm detects something that looks out of the ordinary, it can alert the credit card company 

and allow them to take action before the fraud is committed. 

Credit card fraud detection is a very difficult problem to solve despite its popularity. In the first 

instance, this is as a result of limited availability of data which has made it challenging to match 

a pattern for a dataset. None visibility and accessibility of the datasets to the general public has 

made results of research often hidden and censored. Therefore, it is challenging to benchmark 

for the model built (Powar et al., 2020). 

Overall, credit card fraud is a serious concern that can cause significant financial loss and 

damage to individuals and businesses. By taking precautions and using advanced detection 

methods (Ngai, 2011), credit card companies and financial institutions can help prevent this 

type of crime and protect their customers. The use of machine learning in credit card fraud 

detection and prevention is a valuable tool that can help keep people's financial information 

safe. By analyzing large amounts of data and identifying patterns or trends that may be 

indicative of fraud, machine learning algorithms can help detect and prevent credit card fraud, 

making it a valuable tool for protecting consumers and their financial information. Although 

there seems to be no end to credit card frauds. Irrespective of the tools deployed to minimize 

and stop this criminal act, reports of credit card frauds seem to be increasing and fraudsters are 



British Journal of Computer, Networking and Information Technology 

ISSN:  2689-5315  

Volume 7, Issue 3, 2024 (pp. 1-35)   

4  Article DOI: 10.52589/BJCNIT-YDIJNXG2  

  DOI URL: https://doi.org/10.52589/BJCNIT-YDIJNXG2 

www.abjournals.org 

devising new means and techniques to carry out their devious acts; yet, suspicious transactions 

can be identified using machine learning algorithms. 

A Comparative Study of Machine Learning Algorithms for Credit Card Fraud Detection by 

Hassan and Al-Amin (2019) compares the performance of different machine learning 

algorithms, including support vector machines, decision trees, and neural networks, in 

detecting credit card fraud. The authors found that neural networks performed the best, with an 

accuracy of 97%, followed by support vector machines with 96% accuracy. They also 

highlighted the importance of selecting the appropriate features for training the models and the 

need for regular updates to the algorithms to keep up with changing fraudulent patterns. 

A number of studies have compared the performance of different machine learning algorithms 

on credit card fraud detection. Singh et al. (2020) compared several algorithms, including 

random forests, k-nearest neighbours, and logistic regression, on a dataset of credit card 

transactions. The study found that the random forest algorithm had the highest accuracy and 

the lowest false positive rate. Kim and Lee (2019) provided a comprehensive review of the use 

of various machine learning algorithms in credit card fraud detection, including decision trees, 

support vector machines, and deep learning. Different machine learning algorithms have 

different strengths and weaknesses in dealing with imbalanced data, high dimensionality and 

non-linearity. This research aimed at identifying suspicious transactions using machine 

learning algorithms and also to compare how these algorithms measure up performance-wise 

with different strengths and weaknesses in dealing with imbalanced data, high dimensionality 

and non-linearity. 

 

METHODOLOGY 

The research design is a combination of exploratory and explanatory research methods. 

Machine learning algorithms for credit card fraud detection were employed in this research and 

the implementation of the algorithms using R programming language in practice was explained. 

A systematic methodology was adopted to achieve the goal and this is done through the 

following procedures: 

I. Data Collection: The dataset for this study was obtained from a publicly available 

credit card fraud detection dataset on Kaggle. The dataset contains transactions made by credit 

cards in September 2013 by European cardholders. It includes only transactions that occurred 

in two days. Each transaction was labelled as either a normal transaction or a fraudulent 

transaction, where 492 frauds out of 284,807 transactions were detected. The dataset contains 

31 features, including the amount of the transaction, the time of the transaction, and the type 

of card used. 

II. Descriptive Analysis: The dataset was summarized and described using some 

descriptive statistics like mean, median, standard deviation, minimum and maximum values. 

This is achieved by generating summary statistics, visualizing the data through graphs and 

charts, and identifying patterns and relationships in the data. The purpose of this is to gain 

insights into the data and to identify potential issues or outliers in the data that may affect 

subsequent analyses. 
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III. Data Preprocessing: The dataset was first cleaned and preprocessed to remove any 

missing or irrelevant data in order to ascertain proper labelling of the data points that will be 

suitable for analysis. The dataset was then balanced using the Synthetic Minority Over-

sampling Technique (SMOTE) to ensure that the ratio of fraudulent to non-fraudulent 

transactions was equal (Chawla et al., 2002). 

IV. Feature Selection: Relevant features were selected from the dataset to be used in the 

machine learning model. This was done through the use of various feature selection techniques 

such as correlation analysis, mutual information, and chi-square test and the Recursive Feature 

Elimination (RFE) algorithm. The RFE algorithm is used to select the most important features 

for the model by recursively removing the least important features. The dataset was then 

divided into two sets: one for training the model and the other for testing the model. 

V. Model Selection: Several machine learning algorithms were used for this study, 

including Logistic Regression, K-Nearest Neighbors, Decision Trees, Random Forest, and 

Gradient Boosting. These algorithms were chosen because they are commonly used for credit 

card fraud detection and have shown to be effective in previous studies. 

VI. Model Evaluation: The models were evaluated using several evaluation metrics, 

including accuracy, precision, recall, and F1-score. These metrics were used to determine 

which algorithm performed the best. The model with the highest evaluation metric scores was 

then chosen as the final model for this study. 

Logistic Regression Algorithm 

James et al. (2013) explained the wide usefulness of logistic regression techniques to machine 

learning. A statistical technique like Logistic regression has been widely used for predicting 

categorical variables based on a set of predictor variables. It is a type of supervised learning 

algorithm that is used for binary classification problems. It is used to predict the probability of 

an outcome belonging to one of two classes (usually labeled 0 and 1, yes or no, true or false).  

This method can also be used for pattern identification in data for decision making. Some of 

the areas of application of Logistic regression include credit scoring, medical diagnosis, 

forecasting and market segmentation. 

Logistic regression works by finding a mathematical relationship between a set of predictor 

variables and a response variable. The predictor variables are the independent variables used 

to predict the response variable, which is the dependent variable. The response variable is 

usually a categorical variable, such as whether a patient has a disease or not. The predictor 

variables are usually numerical, such as age, blood pressure, and cholesterol levels. Logistic 

regression models the probability of the response variable given the predictor variables.  

The general mathematical equation for logistic regression is: 

𝑦 =
1

1 + 𝑒−(𝑎 +𝑏1𝑥1+𝑏2𝑥2+𝑏3𝑥3...)
  

where:           (1) 

y is the response variable. 

x is the predictor variable. 
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a and b are the coefficients which are numeric constants. 

The glm() function is used to create the regression model and also get its summary for analysis. 

The model is created by fitting a logistic curve to the data, which is then used to make 

predictions. The parameters of the model are estimated using maximum likelihood estimation. 

The model is expressed as a logistic equation, which is used to calculate the probability of the 

response variable given the predictor variables. This equation is used to classify the data into a 

binary outcome. For example, the equation is used to classify whether a patient has a disease 

or not given the independent variables. Logistic regression can also be used for multi-class 

classification problems. In this case, the model is extended to predict the probability of an 

outcome belonging to one of multiple classes (West, 2008). 

Logistic regression is a popular algorithm for discovering credit card fraud. It works by training 

a model with data from known fraudulent and non-fraudulent transactions. Moreover, 

classification of the new transactions as either fraudulent or non-fraudulent is based on the 

model. Logistic regression can be used to distinguish patterns in the data that help to 

differentiate fraudulent from non-fraudulent transactions. The model can be tuned to identify 

more or fewer fraudulent transactions, depending on the desired level of accuracy. By using 

logistic regression, financial institutions can more accurately detect and prevent credit card 

fraud. 

The most common technique for implementing logistic regression is using a training set. This 

entails separating the data into a training set and a test set. The training set is used to train the 

model and the test set is used to evaluate the performance of the model. Other techniques such 

as cross-validation and regularization can also be used to improve the performance of the 

model. 

In conclusion, logistic regression is a powerful algorithm that can be used for detecting credit 

card fraud. It is a simple and efficient algorithm and has been proven to be effective in detecting 

fraud. The algorithm is also highly accurate and can be used in real-time applications. However, 

it is important to note that it is sensitive to outliers and can be biased if the data is not properly 

pre-processed. Finally, the algorithm can be improved by using more sophisticated techniques 

such as cross-validation and regularization.  

Decision Trees Algorithm 

Decision Trees is a type of Supervised Learning algorithm used for classification and 

regression problems (Sahin & Duman 2011). It provides a clear and interpretable model that 

can be used for decision making by finding relationships between features and outcomes. 

Decision Trees is a tree-like structure used for decision making based on the values of the 

features. It is one of the simplest and most effective algorithms used for supervised learning 

problems. It is widely used in various fields, including finance, healthcare and marketing for 

making predictions and decisions. 
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Figure 1: Decision Tree Example 

Source: https://data-flair.training/blogs/r-decision-trees/  

The decision tree algorithm works by recursively partitioning the data into smaller subsets 

based on the values of the features and makes predictions based on the most common outcome 

or mean outcome in the subsets. It starts at the root node and splits the data into two or more 

subsets based on the test performed on the features. The process of partitioning continues until 

a stopping criteria is met, such as maximum tree depth, minimum number of samples in a 

subset, or reaching a pure subset (i.e., one where all the samples belong to the same class). The 

final result is a tree-like structure where each internal node represents a test on a feature, each 

branch represents an outcome of the test, and each leaf node represents a prediction. 

The algorithm is trained on a large dataset of credit card transactions, including both normal 

and fraudulent transactions. The features used for training the algorithm include the amount of 

the transaction, the location of the transaction, the time of the transaction, and others. The final 

result is a tree-like structure that can be used to detect fraudulent transactions by evaluating the 

features of new transactions and making predictions based on the tree structure. 

Decision Trees is a popular and effective supervised learning algorithm used for classification 

and regression problems. It provides a clear and interpretable model that can be used for 

decision making. In conclusion, using Decision Trees for detecting credit card fraud is a simple, 

fast, and effective method. The algorithm is trained on a large dataset of credit card 

transactions, including both normal and fraudulent transactions, to produce a tree-like structure 

that can be used to detect fraudulent transactions. Despite its limitations, such as overfitting 

and instability, Decision Trees is a versatile and efficient algorithm that is suitable for real-time 

detection of fraudulent transactions. Further research is needed to evaluate the performance of 

Decision Trees in comparison with other machine learning algorithms for detecting credit card 

fraud. 

 

https://data-flair.training/blogs/r-decision-trees/
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Random Forest Algorithm 

Random Forest is an ensemble learning algorithm used for classification and regression 

problems in machine learning. It was first introduced by Leo Breiman and Adele Cutler in 2001 

and has since become a widely used algorithm in the field of machine learning (Kotsiantis et 

al., 2007; Enrique, 2020). The Random Forest algorithm is a popular and highly effective 

learning method that combines multiple decision trees to make a final prediction. It is a 

powerful algorithm that has been used in various fields, including finance, healthcare, and 

marketing, for making predictions and decisions. 

The Random Forest algorithm works by constructing multiple decision trees using 

bootstrapped samples of the original data and a randomly selected subset of the features at each 

node. The final prediction is made by combining the predictions of the individual trees, either 

by majority voting (for classification) or by averaging (for regression). The use of multiple 

trees and bootstrapped samples helps to reduce overfitting, increase diversity among the trees, 

and improve the overall accuracy of the model. 

 

Figure 2: Random Forest Classifier 

Source: https://www.section.io/engineering-education/introduction-to-random-forest-in-

machine-learning/.  

Random Forest has been used for detecting credit card fraud in several studies, with promising 

results (Srivastava, 2008). The algorithm can be trained on large datasets of historical 

transactions to identify patterns and anomalies that are indicative of fraud. In credit card fraud 

detection, the features used for training the Random Forest model may include transaction 

details (e.g., amount, location, and time), customer behavior (e.g., spending patterns and 

demographics), and device information (e.g., IP address and browser type). The Random Forest 

model can then be used to make predictions on new transactions, flagging transactions that are 

likely to be fraudulent. Hence, Random Forest is a powerful machine learning algorithm that 

has been widely used in various fields for making predictions and decisions. The algorithm's 

ability to improve accuracy, reduce overfitting, and handle large datasets makes it a valuable 

tool for financial institutions in their efforts to detect and prevent fraud. Despite its limitations, 

Random Forest is a fast, efficient, and easy-to-interpret algorithm that has proven to be 

effective in detecting credit card fraud. Further research is needed to evaluate the performance 

https://www.section.io/engineering-education/introduction-to-random-forest-in-machine-learning/
https://www.section.io/engineering-education/introduction-to-random-forest-in-machine-learning/
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of Random Forest compared to other machine learning algorithms in the field of credit card 

fraud detection and to develop methods to improve the interpretability of the Random Forest 

model.  

Naive Bayes Algorithm 

Classification is a supervised machine learning task that involves assigning a class label to a 

new observation based on its features. The Naive Bayes algorithm is a popular algorithm for 

classification tasks, as it is simple, fast, and often provides good results. The algorithm is based 

on the concept of conditional probability, which is the probability of an event occurring given 

that another event has already occurred. For example, the probability of a person having a 

particular credit card given that they have a particular credit history. The Naive Bayes 

algorithm has been used in a variety of applications, including text classification, spam 

filtering, and sentiment analysis. 

The Naive Bayes algorithm is based on Bayes' theorem, which states that the probability of a 

hypothesis (in this case, a class) given some observed evidence is proportional to the 

probability of the evidence given the hypothesis, multiplied by the prior probability of the 

hypothesis. In the context of classification, the observed evidence is the feature vector of a new 

observation, and the hypothesis is the class label. The formula of Bayes’ Theorem is given as: 

                                      𝑝(𝐸) =  
𝑝(𝐻)𝑝(𝐻)

𝑝(𝐸)
       (2) 

where: 

P(H | E) – the posterior probability. Posteriori basically means deriving theory out of given 

evidence. It denotes the conditional probability of H (hypothesis), given the evidence E. 

P(E | H) – the likelihood. It is the conditional probability of the occurrence of the evidence, 

given the hypothesis. It calculates the probability of the evidence, considering that the assumed 

hypothesis holds true. 

P(H) – the prior probability. It denotes the original probability of the hypothesis H being true 

before the implementation of Bayes’ Theorem, that is, this probability is without the 

involvement of the data or the evidence. 

P(E) –  the probability of the occurrence of evidence regardless of the hypothesis. 

The Naive Bayes algorithm is a statistical method that is used for classification tasks. It makes 

a strong assumption that the features in a dataset are independent of one another. In the context 

of credit card fraud detection, the Naive Bayes algorithm can be used to classify transactions 

as either fraudulent or non-fraudulent based on the available information about the transaction. 

There are three main types of Naive Bayes algorithms: Gaussian Naive Bayes, Multinomial 

Naive Bayes, and Bernoulli Naive Bayes. Gaussian Naive Bayes is suitable for continuous 

data, Multinomial Naive Bayes is suitable for discrete data, and Bernoulli Naive Bayes is 

suitable for binary data. 

To implement the Naive Bayes algorithm, we first need to prepare the data. This involves pre-

processing the data to remove any irrelevant or redundant information, and transforming the 

data into a format that is suitable for the algorithm (Russell, 2010). 
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Next, the algorithm is trained on a dataset of normal transactions and fraudulent transactions. 

The algorithm calculates the probabilities of each feature being associated with fraudulent 

transactions. During the prediction phase, the algorithm takes the features of a new transaction 

and calculates the probabilities that it is fraudulent or non-fraudulent. The transaction is then 

classified as fraudulent or non-fraudulent based on the highest probability. The results of using 

the Naive Bayes algorithm for credit card fraud detection will depend on the quality and size 

of the training dataset.  

In conclusion, the Naive Bayes algorithm can be an effective tool for detecting credit card 

fraud. It has several advantages, including fast training and prediction times, simple 

implementation, and the ability to handle missing data. However, its limitations, such as the 

assumption of independence among features, must also be considered. The Naive Bayes 

algorithm should be used in combination with other techniques, such as machine learning 

algorithms, to improve its overall performance. 

In general, Naive Bayes has a fast training and prediction time and is not sensitive to irrelevant 

features. It is also simple to implement and can handle missing data. 

However, the strong assumption of independence among features can lead to inaccurate 

predictions. Additionally, Naive Bayes is not suitable for complex decision boundaries, as it 

can only make linear separations between classes. 

K-Nearest Neighbours Algorithm 

The k-NN algorithm is a simple, effective and intuitive machine learning algorithm that is used 

for both classification and regression tasks. Given a new observation, the k-NN algorithm 

assigns it to the class of its k nearest neighbors in the training dataset. 

Assume we are given a dataset where X is a matrix of features from an observation and  Y is a 

class label, k-nearest neighbors then is a method of classification that estimates the conditional 

distribution of  Y given X and classifies an observation to the class with the highest probability. 

Given a positive integer  k,  k-nearest neighbors looks at the  k observations closest to a test 

observation  𝑥0 and estimates the conditional probability that it belongs to class  j using the 

formula: 

𝑃𝑟(𝑌 = 𝑗|𝑋 = 𝑥𝑜) =
1

𝑘
∑𝑖∈𝑁0

𝐼(𝑦𝑖 = 𝑗)       (3) 

where: 

𝑁0 is the set of k-nearest observations and 

I(𝑦𝑖=j) is an indicator variable that evaluates to 1 if a given observation (𝑥𝑖,𝑦𝑖) in 𝑁0 is a 

member of class j, and 0 if otherwise. 

After estimating these probabilities,  k-nearest neighbors assign the observation  𝑥0 to the class 

which the previous probability is the greatest. The following plot can be used to illustrate how 

the algorithm works: 
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Figure 3: k-Nearest Neighbours  

Source: (STAT Library 2020) 

If we choose  K=3, then we have 2 observations in Class B and one observation in Class A. So, 

we classify the red star to Class B. 

If we choose  K=6, then we have 2 observations in Class B but four observations in Class A. 

So, we classify the red star to Class A. 

The k-NN algorithm requires two main components: the distance metric and the value of k. 

The distance metric is used to determine the similarity between two observations, and the value 

of k determines the number of nearest neighbors to consider when making a prediction. 

Common distance metrics include Euclidean distance, Manhattan distance, and cosine 

similarity. 

The k-NN algorithm can be implemented in a few simple steps. First, the algorithm is trained 

on a labeled dataset, which is used to determine the k-nearest neighbors for each observation 

in the test dataset. Next, the algorithm makes predictions for each observation in the test dataset 

based on the majority class of its k-nearest neighbors. 

The k-NN algorithm is a non-parametric method that can be used for both classification and 

regression tasks. In the context of fraud detection, the k-NN algorithm is used to identify 

abnormal transactions by comparing them to a set of normal transactions. To implement the k-

NN algorithm for fraud detection, a labeled dataset of normal and fraudulent transactions is 

first used to train the algorithm. Next, the algorithm is used to classify new transactions as 

either normal or fraudulent based on the majority class of their k nearest neighbors in the 

training dataset. 
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The k-NN algorithm is a powerful tool for detecting credit card fraud, offering several 

advantages over other machine learning techniques. However, it is important to carefully 

consider the limitations of the k-NN algorithm and to select an appropriate value for k when 

implementing this technique for fraud detection. Despite its limitations, the k-NN algorithm is 

a promising approach for preventing financial losses and protecting consumers from credit card 

fraud.  

Ethical Considerations 

Ethical considerations were taken into account during the research process for this study. The 

dataset used for the study was obtained from a reputable source, and all personal identifying 

information was removed from the dataset to protect the privacy of individuals. Additionally, 

the study adhered to all ethical guidelines for research involving human subjects. 

 

RESULTS/FINDINGS 

Data Presentation 

The data set has 30 features, which are the result of a principal component analysis (PCA) 

transformation applied to the original data for confidentiality reasons. The only features that 

have not been transformed are the time and amount of the transaction. The target variable is 

the class, which is 1 for fraudulent transactions and 0 for normal transactions. 

 

Figure 4: Statistical Summary of the Dataset 

Before applying the machine learning algorithms, some exploratory data analysis (EDA) was 

performed to understand the characteristics and distribution of the data. The following are some 

of the findings from the EDA: 

- The data set is highly imbalanced, as only 0.17% of the transactions are fraudulent. This poses 

a challenge for the machine learning algorithms, as they may tend to classify most transactions 

as normal and miss the fraudulent ones. 
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Figure 5: Pie Chart Showing Fraudulent transactions and Non-Fraudulent Transactions 

The time feature shows that the transactions are distributed over two days, with a peak around 

10 hours on both days. There is no clear pattern or trend between the time and the class of the 

transaction. 

 
Figure 6: Histogram of the Time Feature 

The histogram of time feature showed that the data is not normally distributed. 
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Figure 7: Violin Box Plot of Time and Class 

The amount feature shows that most transactions are small, with a median of 22.38 euros. The 

fraudulent transactions tend to have higher amounts than normal transactions, with a median 

of 122.21 euros. However, there are also some outliers in both classes, such as a normal 

transaction of 25,691.16 euros and a fraudulent transaction of 2,125.87 euros. 
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Figure 8: Histogram of Amount Feature 

 

Figure 9: Chart of Amount Against Class 
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The PCA features show that most of them have a standard normal distribution with a mean of 

zero and a standard deviation of one. However, some features have skewed distributions or 

outliers that may affect the performance of some algorithms. 

 

Figure 10: Histogram of the PCA Features 

The correlation matrix shows that most features have low or no correlation with each other or 

with the class variable. However, some features have moderate or high correlation with each 

other or with the class variable. For example, V3 has a negative correlation of -0.59 with the 

class variable, V11 has a positive correlation of 0.69 with the class variable and V2 has a 

positive correlation of 0.53 with V5. 
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Figure 11: Correlation Matrix 

Relationship Between Variables 

To further explore the relationship between variables, some visualizations were created using 

box plots. 

The box plots show that most features have similar ranges and distributions for both classes. 

However, some features show significant differences in their median or quartile values or in 

their presence of outliers between classes. For example, V17 shows that fraudulent transactions 

have lower median and quartile values than normal transactions, and V12 shows that fraudulent 
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transactions have more outliers than normal transactions.

 

Figure 12: Box Plot of PCA Features 

Based on these findings from the EDA, it can be concluded that: 

- The data set is highly imbalanced and requires appropriate techniques to handle it. 

- The time feature does not seem to have much influence on the class of the transaction. 

- The amount feature may be useful to distinguish between normal and fraudulent transactions. 

- The PCA features vary in their distribution and correlation with each other and with the class 

variable. 

- Some PCA features may be more relevant than others for detecting fraudulent transactions. 

 

Performance Comparison of Machine Learning Algorithms 

The data set was split into training and testing sets with a ratio of 80:20. The training set was 

used to train the five algorithms and the testing set was used to evaluate their performance. The 

performance metrics used for comparison are accuracy, precision, recall, F1-score and area 

under the receiver operating characteristic curve (AUC-ROC). Accuracy measures the 
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proportion of correctly classified transactions out of the total number of transactions. Precision 

measures the proportion of correctly detected frauds out of the total number of detected frauds. 

Recall measures the proportion of correctly detected frauds out of the total number of actual 

frauds. F1-score is the harmonic mean of precision and recall, and it balances both metrics. 

AUC-ROC measures the ability of the model to distinguish between fraudulent and non-

fraudulent transactions, regardless of the classification threshold. A higher AUC-ROC 

indicates a better model. 

The training set was used to train the models and tune their hyperparameters using grid search 

and cross-validation techniques. The test set was used to evaluate the models on unseen data 

and compare their performance. The data set was also resampled using synthetic minority 

oversampling technique (SMOTE) to address the class imbalance problem. SMOTE creates 

synthetic samples of the minority class (fraud) by finding its nearest neighbors and 

interpolating new points along the line segments joining them. This way, SMOTE increases 

the number of fraudulent transactions in the training set to match the number of non-fraudulent 

transactions, while preserving the original distribution of the features. 

Table 1: Summary of the performance metrics of each model on both original and 

resampled data sets 

Model Accuracy Precision Recall F1 Score AUC-ROC 

Random Forest (original) 0.9996  

 

0.9487 0.7959 0.8658 0.9796 

Random Forest (resampled)  0.9995 0.8529 0.8469 0.8499 0.9858 

k-Nearest Neighbor (original)  0.9983 0.0000 0.0000 0.0000 0.5000 

k-Nearest Neighbor (resampled)  0.9978  0.0625 0.8469 0.1163 0.9225 

Naive Bayes (original) 0.9778 0.0419 0.8469 0.0797 0.9125 

Naive Bayes (resampled) 0.9734  0.0382 0.8776 0.0732 0.9257 

Logistic Regression (original)  0.9992 0.8750 0.6122 0.7207 0.9784 

Logistic Regression (resampled)  0.9761 0.0513 0.9184 0.0971 0.9474 

Decision Trees (original)  0.9992 0.7879 0.7551 0.7711 0.8776 

Decision Trees (resampled)  0.9974 0.1316 0.8163 0.2264 0.9071 

    Table 3.1 Performance Metrics of Each Machine Learning Algorithm 
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DISCUSSION 

The results show that Random Forest is the best performing model among all, achieving high 

scores in accuracy, precision, recall, F1 score and AUC-ROC. 

It can be concluded that analysis of the credit card fraud detection system using machine 

learning algorithms shows that Logistic Regression and Random Forest algorithms outperform 

other algorithms in detecting credit card fraud. The correlation between variables shows that 

the transaction amount is the most important variable in detecting credit card fraud. The 

anonymized variables V1 to V28 have a low correlation with fraudulent transactions, indicating 

that these variables may not be important in detecting credit card fraud. The results of this study 

can be used to develop more effective credit card fraud detection systems. 

 

CONCLUSION 

This study examined the application of machine learning algorithms in the detection of credit 

card fraud. Logistic regression, K-Nearest Neighbors, Random Forest, Decision Tree, and 

Naive Bayes were used to develop models for the task as against three algorithms Logistic 

regression, K-Nearest Neighbors and Random Forest used by (Singh et al., 2020). The other 

two algorithms were added to show any significant variation in the performance of the features 

considered. The results of the experiments showed that the Random Forest algorithm (original 

or resampled) is the most effective algorithm for credit card fraud detection, followed by the 

Logistic Regression algorithm (resampled). However, it is essential to note that the 

performance of each algorithm is dependent on the preprocessing and feature engineering 

techniques applied to the dataset. 

Machine learning algorithms are an effective tool for detecting credit card fraud based on 

transaction data. They have the potential to significantly reduce the impact of credit card fraud. 

Different machine learning algorithms have different strengths and weaknesses in dealing with 

imbalanced data, high dimensionality and non-linearity. Random Forest is the most suitable 

algorithm for credit card fraud detection among the five algorithms tested in this study. 

 

FUTURE RESEARCH 

This method can further be used in other sectors like agricultural science, life sciences and 

engineering to predict the best algorithm for detection of best crop yield combination, best drug 

dosage combination for treatment of sick animals and best combination of engineering 

materials for the construction of say buildings, respectively. 
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APPENDIX 

R Source File 

#installing packages 

install.packages("tidyverse") 

install.packages("caret") 

install.packages("ROSE") 

install.packages("dplyr") 

install.packages("ggplot2")  

install.packages("glm2") 

install.packages("pROC")  

install.packages("corrplot") 

install.packages("readr") 

install.packages("tidyr") 

install.packages("ROCR") 

install.packages("glmnet") 

install.packages("caretEnsemble") 

install.packages("data.table") 

install.packages("ggcorrplot") 

 

#reading data 

library(readr) 

creditcard <- read.csv(file="creditcard.csv")   

View(creditcard) 

https://www.ftc.gov/news-events/news/press-releases/2019/02/imposter-scams-top-complaints-made-ftc-2018
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#Exploratory Data Analysis 

library(data.table) 

library(ggplot2) 

library(reshape2) 

library(dplyr) 

library(GGally) # for scatterplot matrix 

str(creditcard) #data structure 

dim(creditcard) #dimension 

summary(creditcard) # provides summary statistics for all columns 

glimpse(creditcard) # look at the data 

names(creditcard) #  

head(creditcard) 

tail(creditcard) 

data.table(creditcard)  

sapply(creditcard, sd) # calculates standard deviation for all columns 

sapply(creditcard, var) # calculates variance for all columns 

creditcard$Class = as.factor(creditcard$Class) # make Class a factor 

summary(creditcard$Class) #provides summary statistics for the Class column 

table(creditcard$class) #checking Class imbalance  

summary(creditcard$Amount) #provides summary statistics for the Amount column  

sd(creditcard$Amount) 

IQR(creditcard$Amount) #interquartile range 

var(creditcard$Amount) 

ggplot(creditcard, aes(x = Class, y = Amount)) + geom_boxplot() #boxplot of Class and 

Amount 

ggplot(creditcard, aes(x = Class, fill = Class)) + geom_bar() #bar plot of Class 

ggplot(creditcard, aes(x = V1)) + geom_histogram(binwidth = 0.5, fill = "steelblue", color = 

"white") #v1 histogram 
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ggplot(creditcard, aes(x = V1)) + geom_density(fill = "steelblue", alpha = 0.5) #v1 density plot 

ggplot(creditcard, aes(x = Class, y = V1, fill = Class)) + geom_tile() #v1 heatmap 

ggplot(creditcard, aes(x = V2)) + geom_histogram(binwidth = 0.5, fill = "steelblue", color = 

"white") #v2 histogram 

ggplot(creditcard, aes(x = V2)) + geom_density(fill = "steelblue", alpha = 0.5) #v2 density plot 

ggplot(creditcard, aes(x = Class, y = V2, fill = Class)) + geom_tile() #v2 heatmap 

ggplot(creditcard, aes(x = V3)) + geom_histogram(binwidth = 0.5, fill = "steelblue", color = 

"white") #v3 histogram 

ggplot(creditcard, aes(x = V3)) + geom_density(fill = "steelblue", alpha = 0.5) #v3 density plot 

ggplot(creditcard, aes(x = Class, y = V3, fill = Class)) + geom_tile() #v3 heatmap  

ggplot(creditcard, aes(x = V4)) + geom_histogram(binwidth = 0.5, fill = "steelblue", color = 

"white") #v4 histogram 

ggplot(creditcard, aes(x = V4)) + geom_density(fill = "steelblue", alpha = 0.5) #v4 density plot 

ggplot(creditcard, aes(x = Class, y = V4, fill = Class)) + geom_tile() #v4 heatmap 

ggplot(creditcard, aes(x = V5)) + geom_histogram(binwidth = 0.5, fill = "steelblue", color = 

"white") #v5 histogram 

ggplot(creditcard, aes(x = V5)) + geom_density(fill = "steelblue", alpha = 0.5) #v5 density plot 

ggplot(creditcard, aes(x = Class, y = V5, fill = Class)) + geom_tile() #v5 heatmap 

ggplot(creditcard, aes(x = V6)) + geom_histogram(binwidth = 0.5, fill = "steelblue", color = 

"white") #v6 histogram 

ggplot(creditcard, aes(x = V6)) + geom_density(fill = "steelblue", alpha = 0.5) #v6 density plot 

ggplot(creditcard, aes(x = Class, y = V6, fill = Class)) + geom_tile() #v6 heatmap 

ggplot(creditcard, aes(x = V7)) + geom_histogram(binwidth = 0.5, fill = "steelblue", color = 

"white") #v7 histogram 

ggplot(creditcard, aes(x = V7)) + geom_density(fill = "steelblue", alpha = 0.5) #v7 density plot 

ggplot(creditcard, aes(x = Class, y = V7, fill = Class)) + geom_tile() #v7 heatmap 

ggplot(creditcard, aes(x = V8)) + geom_histogram(binwidth = 0.5, fill = "steelblue", color = 

"white") #v8 histogram 

ggplot(creditcard, aes(x = V8)) + geom_density(fill = "steelblue", alpha = 0.5) #v8 density plot 

ggplot(creditcard, aes(x = Class, y = V8, fill = Class)) + geom_tile() #v8 heatmap 
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ggplot(creditcard, aes(x = V9)) + geom_histogram(binwidth = 0.5, fill = "steelblue", color = 

"white") #v9 histogram 

ggplot(creditcard, aes(x = V9)) + geom_density(fill = "steelblue", alpha = 0.5) #v9 density plot 

ggplot(creditcard, aes(x = Class, y = V9, fill = Class)) + geom_tile() #v9 heatmap 

ggplot(creditcard, aes(x = V10)) + geom_histogram(binwidth = 0.5, fill = "steelblue", color = 

"white") #v10 histogram 

ggplot(creditcard, aes(x = V10)) + geom_density(fill = "steelblue", alpha = 0.5) #v10 density 

plot 

ggplot(creditcard, aes(x = Class, y = V10, fill = Class)) + geom_tile() #v10 heatmap 

ggplot(creditcard, aes(x = V11)) + geom_histogram(binwidth = 0.5, fill = "steelblue", color = 

"white") #v11 histogram 

ggplot(creditcard, aes(x = V11)) + geom_density(fill = "steelblue", alpha = 0.5) #v11 density 

plot 

ggplot(creditcard, aes(x = Class, y = V11, fill = Class)) + geom_tile() #v11 heatmap 

ggplot(creditcard, aes(x = V12)) + geom_histogram(binwidth = 0.5, fill = "steelblue", color = 

"white") #v12 histogram 

ggplot(creditcard, aes(x = V12)) + geom_density(fill = "steelblue", alpha = 0.5) #v12 density 

plot 

ggplot(creditcard, aes(x = Class, y = V12, fill = Class)) + geom_tile() #v12 heatmap 

ggplot(creditcard, aes(x = V13)) + geom_histogram(binwidth = 0.5, fill = "steelblue", color = 

"white") #v13 histogram 

ggplot(creditcard, aes(x = V13)) + geom_density(fill = "steelblue", alpha = 0.5) #v13 density 

plot 

ggplot(creditcard, aes(x = Class, y = V13, fill = Class)) + geom_tile() #v13 heatmap 

ggplot(creditcard, aes(x = V14)) + geom_histogram(binwidth = 0.5, fill = "steelblue", color = 

"white") #v14 histogram 

ggplot(creditcard, aes(x = V14)) + geom_density(fill = "steelblue", alpha = 0.5) #v14 density 

plot 

ggplot(creditcard, aes(x = Class, y = V14, fill = Class)) + geom_tile() #v14 heatmap 

ggplot(creditcard, aes(x = V15)) + geom_histogram(binwidth = 0.5, fill = "steelblue", color = 

"white") #v15 histogram 

ggplot(creditcard, aes(x = V15)) + geom_density(fill = "steelblue", alpha = 0.5) #v15 density 

plot 
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ggplot(creditcard, aes(x = Class, y = V15, fill = Class)) + geom_tile() #v15 heatmap 

ggplot(creditcard, aes(x = V16)) + geom_histogram(binwidth = 0.5, fill = "steelblue", color = 

"white") #v16 histogram 

ggplot(creditcard, aes(x = V16)) + geom_density(fill = "steelblue", alpha = 0.5) #v16 density 

plot 

ggplot(creditcard, aes(x = Class, y = V16, fill = Class)) + geom_tile() #v16 heatmap 

ggplot(creditcard, aes(x = V17)) + geom_histogram(binwidth = 0.5, fill = "steelblue", color = 

"white") #v17 histogram 

ggplot(creditcard, aes(x = V17)) + geom_density(fill = "steelblue", alpha = 0.5) #v17 density 

plot 

ggplot(creditcard, aes(x = Class, y = V17, fill = Class)) + geom_tile() #v17 heatmap 

ggplot(creditcard, aes(x = V18)) + geom_histogram(binwidth = 0.5, fill = "steelblue", color = 

"white") #v18 histogram 

ggplot(creditcard, aes(x = V18)) + geom_density(fill = "steelblue", alpha = 0.5) #v18 density 

plot 

ggplot(creditcard, aes(x = Class, y = V18, fill = Class)) + geom_tile() #v18 heatmap 

ggplot(creditcard, aes(x = V19)) + geom_histogram(binwidth = 0.5, fill = "steelblue", color = 

"white") #v19 histogram 

ggplot(creditcard, aes(x = V19)) + geom_density(fill = "steelblue", alpha = 0.5) #v19 density 

plot 

ggplot(creditcard, aes(x = Class, y = V19, fill = Class)) + geom_tile() #v19 heatmap 

ggplot(creditcard, aes(x = V20)) + geom_histogram(binwidth = 0.5, fill = "steelblue", color = 

"white") #v20 histogram 

ggplot(creditcard, aes(x = V20)) + geom_density(fill = "steelblue", alpha = 0.5) #v20 density 

plot 

ggplot(creditcard, aes(x = Class, y = V20, fill = Class)) + geom_tile() #v20 heatmap 

ggplot(creditcard, aes(x = V21)) + geom_histogram(binwidth = 0.5, fill = "steelblue", color = 

"white") #v21 histogram 

ggplot(creditcard, aes(x = V21)) + geom_density(fill = "steelblue", alpha = 0.5) #v21 density 

plot 

ggplot(creditcard, aes(x = Class, y = V21, fill = Class)) + geom_tile() #v21 heatmap 

ggplot(creditcard, aes(x = V22)) + geom_histogram(binwidth = 0.5, fill = "steelblue", color = 

"white") #v22 histogram 
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ggplot(creditcard, aes(x = V22)) + geom_density(fill = "steelblue", alpha = 0.5) #v22 density 

plot 

ggplot(creditcard, aes(x = Class, y = V22, fill = Class)) + geom_tile() #v22 heatmap 

ggplot(creditcard, aes(x = V23)) + geom_histogram(binwidth = 0.5, fill = "steelblue", color = 

"white") #v23 histogram 

ggplot(creditcard, aes(x = V23)) + geom_density(fill = "steelblue", alpha = 0.5) #v23 density 

plot 

ggplot(creditcard, aes(x = Class, y = V23, fill = Class)) + geom_tile() #v23 heatmap 

ggplot(creditcard, aes(x = V24)) + geom_histogram(binwidth = 0.5, fill = "steelblue", color = 

"white") #v24 histogram 

ggplot(creditcard, aes(x = V24)) + geom_density(fill = "steelblue", alpha = 0.5) #v24 density 

plot 

ggplot(creditcard, aes(x = Class, y = V24, fill = Class)) + geom_tile() #v24 heatmap 

ggplot(creditcard, aes(x = V25)) + geom_histogram(binwidth = 0.5, fill = "steelblue", color = 

"white") #v25 histogram 

ggplot(creditcard, aes(x = V25)) + geom_density(fill = "steelblue", alpha = 0.5) #v25 density 

plot 

ggplot(creditcard, aes(x = Class, y = V25, fill = Class)) + geom_tile() #v25 heatmap 

ggplot(creditcard, aes(x = V26)) + geom_histogram(binwidth = 0.5, fill = "steelblue", color = 

"white") #v26 histogram 

ggplot(creditcard, aes(x = V26)) + geom_density(fill = "steelblue", alpha = 0.5) #v26 density 

plot 

ggplot(creditcard, aes(x = Class, y = V26, fill = Class)) + geom_tile() #v26 heatmap 

ggplot(creditcard, aes(x = V27)) + geom_histogram(binwidth = 0.5, fill = "steelblue", color = 

"white") #v27 histogram 

ggplot(creditcard, aes(x = V27)) + geom_density(fill = "steelblue", alpha = 0.5) #v27 density 

plot 

ggplot(creditcard, aes(x = Class, y = V27, fill = Class)) + geom_tile() #v27 heatmap 

ggplot(creditcard, aes(x = V28)) + geom_histogram(binwidth = 0.5, fill = "steelblue", color = 

"white") #v28 histogram 

ggplot(creditcard, aes(x = V28)) + geom_density(fill = "steelblue", alpha = 0.5) #v28 density 

plot 

ggplot(creditcard, aes(x = Class, y = V28, fill = Class)) + geom_tile() #v28 heatmap 
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#Visualing Fraud Vs Mon-Fraud 

fraudcounts <- table(creditcard$Class) # Count the number of frauds and non-frauds 

# Create a data frame with the counts and labels 

frauddata <- data.frame( 

  fraud = c("Non-fraud", "Fraud"), 

  count = c(fraudcounts[1], fraudcounts[2]) 

) 

# Create a pie chart 

ggplot(frauddata, aes(x = "", y = count, fill = fraud)) + 

  geom_bar(width = 1, stat = "identity") + 

  coord_polar(theta = "y") + 

  labs(title = "Credit Card Fraud Detection", fill = "") + 

  theme_void() 

#Visualizing Physical Features 

physically_imp_features <- c("Time", "Amount", "V1", "V2", "V3") # Select the physically 

important features 

creditcardsubset <- creditcard[, c(physically_imp_features, "Class")] # Subset the data frame 

to include only the important features and the fraud flag 

creditcardmelt <- melt(creditcardsubset, id.vars = "Class") # Melt the data frame to long format 

# Create a heatmap 

ggplot(creditcardmelt, aes(x = variable, y = Class, fill = value)) + 

  geom_tile() + 

  scale_fill_gradient(low = "white", high = "red") + 

  facet_wrap(~Class) + 

  theme(axis.text.x = element_text(angle = 90, vjust = 0.5)) 

pairs(creditcard) #scatterplot 

ggpairs(creditcard) 

 

#Data Preprocessing 
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library(caret) 

library(dplyr) 

library(tidyr) 

library(mice) 

library(tidyverse) 

library(ROSE) 

library(DMwR2) 

library(smotefamily) 

creditcard <- creditcard %>%  

  select(-Time) %>% # removing the time column 

  mutate_if(is.character, as.factor) %>% # converting character columns to factors 

  mutate_all(funs(ifelse(is.na(.), median(., na.rm=TRUE), .))) # handling missing values by 

imputing with median 

creditcard$Class <- as.numeric(creditcard$Class == "fraud") # Encode categorical variables 

creditcard[,1:29] <- scale(creditcard[,1:29]) # Standardize numerical variables 

boxplot(creditcard) # Remove outliers 

creditcard <- creditcard %>% 

  filter(creditcard$Amount > -3 & creditcard$Amount < 3) 

creditcard <- creditcard %>% # Balancing Using Smote 

  mutate(Class = as.factor(Class)) 

set.seed(123) 

creditcard$Class = factor(creditcard$Class) 

creditcard_balanced <- SMOTE(creditcard[,1:29], creditcard$Class, K = 5) 

 

# Feature Selection 

library(caret) 

library(caretEnsemble) 

library(e1071) 
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library(corrplot) 

library(ggplot2) 

library(ggcorrplot) 

library(caTools) 

# Correlation analysis 

correlations <- cor(creditcard[, -31]) #correlation matrix 

corrplot::corrplot(correlations, type = "upper", order = "hclust") 

corrplot(correlations, method = "circle") #correlation plot 

# Mutual Information Feature Selection 

mi <- information.gain(Class ~ ., creditcard_balanced) 

mi <- mi[order(-mi),] 

top_features <- names(mi)[1:10] 

creditcard <- creditcard_balanced[, c("Class", top_features)] 

#chi-square test 

chisq_test <- chisq.test(creditcard[, -31], creditcard$Class) 

p_values <- chisq_test$p.value 

significant_features <- names(which(p_values < 0.05)) 

creditcard <- creditcard[, c("Class", significant_features)] 

# Recursive Feature Elimination 

control <- rfeControl(method = "cv", number = 5) 

model <- rfe(creditcard[, -31], creditcard$Class, sizes = c(1:5), rfeControl = control) 

selected_features <- predict(model, creditcard[, -31]) 

creditcard <- creditcard[, c("Class", colnames(creditcard[, -31])[selected_features])] 

# Splitting the Data into Training & Testing Sets 

set.seed(123) 

train_index <- createDataPartition(y = creditcard$Class, p = 0.7, list = FALSE) 

creditcard_train <- creditcard[train_index, ] 

credicard_test <- creditcard[-train_index, ] 
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dim(creditcard_train) 

dim(creditcard_test) 

selected_features <- grep("^V", names(creditcard_train), value = 

TRUE)[rfe_model$optVariables] #Select features 

#Plot features 

ggplot(creditcard_train, aes(x = selected_features, y = Class)) +  

  geom_boxplot() +  

  stat_summary(fun.y = mean, geom = "point") 

cor(creditcard_train[selected_features], train_data$Class, use = "pairwise.complete.obs") 

#Check correlation 

 

# Logistic Regression 

library(glm2) 

library(glmnet) 

library(pROC) 

log_model <- glm(Class ~ ., data = creditcard_train, family = "binomial") #fit the logistic 

regression model 

summary(lr_model) #provides summary statistics of the logistic regression model 

plot(lr_model) #plots the regression model 

# Predict on Test Data 

X_test <- creditcard_test %>% select(-Class) 

y_test <- creditcard_test$Class 

creditcard_test$Class <- predict(lr_model, newdata = creditcard_test, probabilty = TRUE) 

# Model Evaluation 

library(pROC) 

library(caret) 

conf_mat <- confusionMatrix(pred, y_test) # confusion matrix 

conf_mat$table 

roc_curve <- roc(y_test, pred) # roc curve 
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auc <- auc(roc_curve) #auc 

plot(roc_curve, main = paste("ROC Curve (AUC =", round(auc, 3), ")")) 

 

#Random Forest 

# Fit a random forest model 

rf_model <- randomForest(Class ~ ., data = creditcard_train, ntree = 100, mtry = 5) 

# Predict on the test data 

predictions <- predict(rf_model, newdata = creditcard_test) 

# Evaluate the model using F1 score, accuracy, precision, recall, AUC, and ROC 

f1_score <- F1_Score(predictions, creditcard_test$Class) 

accuracy <- confusionMatrix(predictions, creditcard_test$Class)$overall["Accuracy"] 

precision <- confusionMatrix(predictions, creditcard_test$Class)$byClass["Precision"] 

recall <- confusionMatrix(predictions, creditcard_test$Class)$byClass["Recall"] 

auc <- as.numeric(performance(prediction(predictions, creditcard_test$Class), 

"auc")@y.values) 

roc <- plot(performance(prediction(predictions, creditcard_test$Class), "tpr", "fpr"), main = 

"ROC Curve for Random Forest Model") 

# Print the evaluation metrics 

cat("F1 Score: ", f1_score, "\n") 

cat("Accuracy: ", accuracy, "\n") 

cat("Precision: ", precision, "\n") 

cat("Recall: ", recall, "\n") 

cat("AUC: ", auc, "\n") 

# Save the ROC plot as an image file 

png("roc_plot.png") 

print(roc) 

dev.off() 

 

#Naive Bayes 
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# Fit a Naive Bayes model 

nb_model <- naiveBayes(Class ~ ., data = creditcard_train) 

# Predict on the test data 

predictions <- predict(nb_model, newdata = creditcard_test) 

# Evaluate the model using F1 score, accuracy, precision, recall, AUC, and ROC 

f1_score <- F1_Score(predictions, creditcard_test$Class) 

accuracy <- confusionMatrix(predictions, creditcard_test$Class)$overall["Accuracy"] 

precision <- confusionMatrix(predictions, creditcard_test$Class)$byClass["Precision"] 

recall <- confusionMatrix(predictions, creditcard_test$Class)$byClass["Recall"] 

auc <- as.numeric(performance(prediction(predictions, creditcard_test$Class), 

"auc")@y.values) 

roc <- plot(performance(prediction(predictions, creditcard_test$Class), "tpr", "fpr"), main = 

"ROC Curve for Naive Bayes Model") 

# Print the evaluation metrics 

cat("F1 Score: ", f1_score, "\n") 

cat("Accuracy: ", accuracy, "\n") 

cat("Precision: ", precision, "\n") 

cat("Recall: ", recall, "\n") 

cat("AUC: ", auc, "\n") 

# Save the ROC plot as an image file 

png("roc_plot.png") 

print(roc) 

dev.off() 

 

#Decision Trees 

# Fit a decision tree model 

dt_model <- rpart(Class ~ ., data = train, method = "class") 

# Predict on the test data 

predictions <- predict(dt_model, newdata = test, type = "class") 
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# Evaluate the model using F1 score, accuracy, precision, recall, AUC, and ROC 

f1_score <- F1_Score(predictions, test$Class) 

accuracy <- confusionMatrix(predictions, creditcard_test$Class)$overall["Accuracy"] 

precision <- confusionMatrix(predictions, creditcard_test$Class)$byClass["Precision"] 

recall <- confusionMatrix(predictions, creditcard_test$Class)$byClass["Recall"] 

auc <- as.numeric(performance(prediction(predictions, creditcard_test$Class), 

"auc")@y.values) 

roc <- plot(performance(prediction(predictions, creditcard_test$Class), "tpr", "fpr"), main = 

"ROC Curve for Decision Tree Model") 

# Print the evaluation metrics 

cat("F1 Score: ", f1_score, "\n") 

cat("Accuracy: ", accuracy, "\n") 

cat("Precision: ", precision, "\n") 

cat("Recall: ", recall, "\n") 

cat("AUC: ", auc, "\n") 

# Plot the decision tree 

rpart.plot(dt_model) 

# Save the ROC plot as an image file 

png("roc_plot.png") 

print(roc) 

dev.off() 

 

#k-Nearest Neighbours 

# Fit a k-nearest neighbors model 

knn_model <- knn(train[, -31], test[, -31], train$Class, k = 5) 

 

# Predict on the test data 

predictions <- as.numeric(knn_model) 
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# Evaluate the model using F1 score, accuracy, precision, recall, AUC, and ROC 

f1_score <- F1_Score(predictions, creditcard_test$Class) 

accuracy <- confusionMatrix(predictions, creditcard_test$Class)$overall["Accuracy"] 

precision <- confusionMatrix(predictions, creditcard_test$Class)$byClass["Precision"] 

recall <- confusionMatrix(predictions, creditcard_test$Class)$byClass["Recall"] 

auc <- as.numeric(performance(prediction(predictions, creditcard_test$Class), 

"auc")@y.values) 

roc <- plot(performance(prediction(predictions, creditcard_test$Class), "tpr", "fpr"), main = 

"ROC Curve for KNN Model") 

# Print the evaluation metrics 

cat("F1 Score: ", f1_score, "\n") 

cat("Accuracy: ", accuracy, "\n") 

cat("Precision: ", precision, "\n") 

cat("Recall: ", recall, "\n") 

cat("AUC: ", auc, "\n") 

# Save the ROC plot as an image file 

png("roc_plot.png") 

print(roc) 

dev.off() 

 


