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ABSTRACT: Malware has grown to be an intricate and dynamic threat 

to cybersecurity. Researchers and cybersecurity specialists use a range 

of methods to analyze and comprehend malware in order to effectively 

counter this threat. The malware sandbox is one of the most crucial 

instruments in this battle. Insights gained by evaluating malware in a 

sandbox aid in the creation of effective detection. Finding a sandbox that 

is both highly precise, efficient and affordable is a challenging task. This 

study compares the effectiveness of Cuckoo Sandbox and Procmon, two 

of the most popular sandboxes, in the efficient implementation of 

malware analysis and detection. A Windows 10 Pro window-based 

computer with a 4 GHz CPU, 16 GB RAM, 8 cores, and a 320 GB hard 

drive (HDD) was set up.  An Oracle virtual machine (VM) for guests 

was set up and launched. Using the Oracle VM, a virtual operating 

system (Windows 10 Pro).  Furthermore, Yara-Python was deployed and 

JSON reports, a system built on Python was created.  The results show 

that Cuckoo consistently outperforms Procmon in terms of execution 

time, completing much more quickly and steadily over each of the ten 

process runs. Procmon has significantly longer and more fluctuating 

execution times, peaking at 989 seconds, while Cuckoo maintains 

execution durations around 530 seconds, suggesting superior efficiency 

and consistency. Six (6) machine learning-based methods for classifying 

and detecting malware that used Cuckoo sandbox and process monitor 

were surveyed. Different performance indicators were found in the six-

machine learning-based malware detection and classification studies 

that Process Monitor was used to survey. A review of six machine 

learning-based malware detection and classification studies using both 

Process Monitor and Cuckoo Sandbox indicated that Cuckoo Sandbox 

consistently delivered better performance. The findings show that 

machine learning-based malware detection conducted with Cuckoo 

attained a higher average accuracy of 99.35% compared to 94.48% with 

Procmon, along with a superior ROC value of 0.97 (97%) versus 0.91 

(91%) for Procmon. 

KEYWORDS: Cuckoo sandbox process monitor; Sandboxing; 

Malware analysis. 
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INTRODUCTION 

Malware has developed into a complex and ever evolving threat to cybersecurity. To 

effectively combat this threat, researchers and cybersecurity experts apply a variety of 

techniques to examine and understand malware. In this fight, the malware sandbox is one of 

the most important tools (Raj et al., 2024).  Sandboxing is a cybersecurity technique that 

involves running, observing, and analyzing code within a secure, isolated network environment 

that mimics an end-user operating system. This method is designed to prevent potential threats 

from infiltrating the network and is often used to evaluate untested or untrusted code. By 

constraining the code to a controlled test environment, sandboxing contains any harmful 

actions or infections, protecting the host machine and operating system from damage (). In 

order to isolate suspicious files or programs in a secure, segregated environment and prevent 

them from compromising real systems, malware analysis in a sandbox is performed. Static 

analysis is usually used to examine file attributes, and dynamic analysis is used to observe 

behavior while the process is running. To accomplish this, it must be suspended using Docker 

in a virtual environment where it cannot damage the system (Sinha & Sai, 2023). Sandbox 

environments capture system calls, network traffic, and modifications to the file system and 

registry, providing vital information on malware functionalities (Ijaz, Durad & Ismail, 2019). 

Malware features extracted from the analysis reports (AR) generated by the sandbox captures 

the behavioral data of each sample. A thorough understanding of the sandbox's functionality 

and the structure of its reports is essential (Chumachenko, 2017).  There are several malware 

analysis tools and platforms the cybersecurity community have developed to help curb the 

persistent surge of cyber threats by enabling security analysts to gather and analyze malware 

samples, unravel their capabilities, and guide investigations. They include Joe Sandbox, 

Procmon or Process Monitor (windows Sysinternals), Process Explorer (windows 

Sysinternals), Autoruns (windows Sysinternals), Anubis, CWSandbox, ProDot, x64dbg, 

Process Hacker, Pestudio, Ghidra, and Fiddler, among others. (Fox, 2021). Of all these 

sandboxing tools, Cuckoo sandbox and Procmon (process monitor) from Windows 

Sysinternals are open source and are extensively deployed by malware analysts. The aim of 

this paper is to evaluate the performance of Cuckoo Sandbox with Procmon in effective 

implementation of malware analysis and detection.  

 

REVIEW OF RELATED LITERATURE 

Malware Analysis 

The goal of malware analysis is to investigate the characteristics and features of malicious 

software, so as to help malware analysts understand better the nature of intended malware 

attacks and provide protection against future attacks (Mills & Leggs, 2020). According to Alam 

et al. (2015), there are three approaches in malware detection, known as static analysis, which 

scrutinize and examine software source code (Egele et al., 2008), and dynamic analysis, which 

examines system behavior during the execution of malware (Or-Meir et al., 2019), and the third 

being hybrid analysis. The malware sample is not run during static analysis, whereas during 

dynamic analysis the malware sample runs (Bragen, 2015).  
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a. Dynamic Analysis:  Dynamic analysis of malware is achieved by examining the 

activities and dealings of a program while the program is executing in a secured environment. 

The indicator, functionality, and behaviors of the program that enable one to determine if a 

program is benign or malicious, can be identified during dynamic analysis (Pektas, 2015). The 

procedure for dynamic analysis includes three steps: to set up and cleanse an environment; to 

run the malware; and to examine and document (log) malware behavior. The log or documented 

files supply factual information concerning files that are opened, accessed, or called (Arends 

& Kerstin, 2018). One of the approaches of dynamic analysis is the automatic dynamic 

analysis, in which the program behavior is traced by using classical tools like Cuckoo and 

CWSandbox (Cuckoo, 2019; Kim, 2018).  These tools take as input, a file, and afterward 

execute the file using a virtual environment.  

b. Static Analysis: The static analysis technique refers to the analysis of the PE files 

(Portable Executable files) without running the code. Binary packers, like ASP Pack Shell and 

UPX are generally used by malware, in order to keep away from being analyzed (Zaki & 

Humphrey, 2014). A Portable Executable file has to be unpacked prior to being analyzed. In 

static analysis, nearly every program employed the Windows API calls to interact with the 

operating system. A typical example is the OpenFileW, which is a Windows API in 

Kernel32.dll that generates a novel file or opens an existing file. So, API calls expose the 

behavior of programs and can be regarded as a crucial mark in malware detection. For example, 

Windows API calls such as "LoadLibrary" "WriteProcessMemory", and 

"CreateRemoteThread" are assumed behavior manifested by malware for DLL injection into a 

process, whereas hardly ever come together in a genuine setting. 

1. Cuckoo Sandbox 

It is common knowledge that to engage the machine learning algorithms in any problem, it is 

critical to represent the data in some form. Consequently, Cuckoo Sandbox was adopted. 

Malware features extracted from the analysis reports (AR) generated by the sandbox, which 

describes the behavioral data of every sample, were preprocessed. Understanding the 

functionality of the sandbox and the report’s structure is very essential (Chumachenko, 2017).  

Cuckoo is one of the most important sandbox environments for malware analysis. Cuckoo 

Sandbox is an open-source malware analysis sandbox that generates a comprehensive and 

exhaustive report of the behavior of files within seconds. Per Cuckoo Foundation (2015) 

supports different categories of file formats, including DLL files, URLs and HTML files, PDF, 

ZIP files, Microsoft Office documents, CPL files, Visual Basic (VB) scripts, python files, 

Macro enabled files, Java JAR and PHP scripts. The Cuckoo Sandbox provides platforms for 

automated analysis of chary files (Cuckoo Foundation, 2015). Cuckoo sandbox has an 

extremely modifiable flexible architecture, permitting the sandbox to be utilized as a standalone 

application and can also be embedded into larger frameworks. Figure 1 is the architecture of 

the Cuckoo sandbox, showing the cuckoo host, Analysis Guests, Analysis VM, n (n = 1, 2, 3), 

and internet or sinkhole.  
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Figure 1: Cuckoo Sandbox Architecture (Cuckoo Foundation, 2015) 

After generating the behavior of the file, the Sandbox makes a decision on the severity of 

maleficence of the file using certain existing signatures. The reports generated from the 

sandbox are represented as a JSON file. Cuckoo Sandbox affords analysts the opportunity of 

automating the analysis of suspicious samples. With dynamic (behavioral) analysis, hash 

comparisons, and other unified tools, identification of malware and determination of the kind 

of indicators to look for in their production environment to determine the presence of 

malevolent actions on a system becomes possible. Cuckoo, as an automated malware analysis 

tool, provides data concerning the behavior of malicious files; however, it does not actively 

classify malware using these observations. Alternatively, Cuckoo can be set up to allow files 

to be submitted to VirusTotal (Walker & Sengupta, 2020). Cuckoo sandbox contains built-in 

logging and monitoring during a malware sample analysis. In the cuckoo setup, as seen in 

figure 12 above, the cuckoo generates its peculiar network that links the host machine with the 

virtual machines from which malware analysis is performed. Executing virtual machines in a 

separate network permits cuckoo to execute malware safely and analyze it without the fear of 

malware infecting the machine that is external to the isolated virtual machine (Muhovic, 2020). 

Through Cuckoo, malware files can be directly submitted through a web UI (user interface) 

from which analysis results can also be viewed in a virtual environment. Cuckoo core can 

receive malware samples and several options can be selected with regards to what happens 

with the virtual machine (VM). As formulated by Muhovic (2020), figure 2 illustrates a typical 

malware analysis process in the Cuckoo sandbox. 
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Figure 2: Malware Analysis Process in Cuckoo 

2. Process Monitor 

Process Monitor is a sophisticated monitoring tool for Windows that provides real-time insights 

into file system, registry, and process/thread activities. It merges the functionalities of the 

legacy Sysinternals utilities, Filemon and Regmon, while offering numerous enhancements. 

These include advanced and non-destructive filtering, detailed event properties like session IDs 

and user names, accurate process information, complete thread stacks with integrated symbol 

support for each operation, and the ability to log simultaneously to a file, among other features. 

These powerful capabilities make Process Monitor an essential tool for system troubleshooting 

and malware detection (Spiceworks, 2024). The main functionality of Procmon is known as 

event capture, which allows system administrators to see and monitor all activity in addition to 

historical event logs in order to identify dangerous activities such as viruses and malware 

(Harrington, 2021). In the event of malware infiltration to a system, Procmon works in 

performance with data alert tools to help initiate the appropriate procedures and reactions. It is 

also similar to open-source malware detection and extraction tools like Process Hacker. 

Procmon is a potent analysis tool that uses a kernel driver to monitor and capture profiling 

events, network activity, registry activity, File system activity, and processes, including threads 

activity on a given system (Bencherchali, 2020). Process Monitor analyzes processes such as 

update, read-write (WriteFile, ReadFile, and CreatFile), or delete registry records. This action 

enables the analyst who reviews the file to determine the method in which malware executes 

its actions and instigates the attack (Bhardwaj, Avasthi, Sastry & Subrahmanyam, 2016). 
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RESEARCH METHODOLOGY 

To evaluate the efficiency and accuracy of the cuckoo sandbox with process monitor, we ran a 

comparative study of the two analysis tools (Cuckoo and Procmon) and their respective 

execution time was recorded. Accuracy level was also used as a criterion to determine which 

one of these tools is more reliable in malware detection and classification when applying 

specific machine learning models.  

Experimental Design and Results 

To achieve the goal of the study, Cuckoo sandbox lab was set up with ten (10) different runs 

of malware analysis with different file types and sizes. After each run, the type of malware 

detected; the severity level of the malware captured by cuckoo threat level score; and the 

execution time was recorded (table 5.1). A similar lab was set up for Process Monitor 

(Procmon) that also runs ten (10) isolated processes.  The process activities like file system, 

network communications, and registry keys were monitored, and the process name; operation 

types performed; operation class (file system, registry keys or network communications); and 

the duration of process execution were captured and recorded (Table 5.2). 

We deployed a window-based PC (Window 10 Pro current version) with 4 GHz CPU, 16 GB 

RAM, 8 Cores and 320 GB Hard Disk Drive (HDD)  

To deploy the host, we set up the experiment as follows: 

1. Deploy Windows 10 Pro 

2. Launch and configure the guests VM (Oracle VM VirtualBox) 

3. Installation of Ubuntu server 20.04LTE (on guest OS) 

4. System upgrade 

5. Creation of dedicated user for Cuckoo Sandbox 

6. Deployment of Cuckoo Sandbox. To configure the Cuckoo Sandbox, we: 

● Added MongoDB 

● Added repository 

● Created database for Cuckoo 

● Deployed Yara-Python 

● Configured of VM 
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For the virtual machine (VM) and guest system, we deployed the Oracle VM VirtualBox which 

was setup and configured as follows: 

Operating System  - Window 10 (32-bit) 

Based Memory - 904MB 

Accelerator  - PAE/NX, Hyper-V Paravirtualization 

Video Memory - 130 MB 

Graphic Controller - VBox SVGA 

Storage Controller - STAT 

SATA Port0:  - Windows 10 vdi  (Normal 50.0 GB) 

SATA Port1:  - [Optical Drive] Windows.iso (3.86 GB) 

Network adapter: - Intel PRO/1000 MT Desktop (NAT) 

 

Cuckoo Sandbox Configuration and Results 

 The Cuckoo Sandbox and its dependencies were installed using Oracle VM Virtualbox. Its 

purpose was to execute Portable Executable files (PEs) and generate JSON reports that show 

the behavior of the executed programs in a controlled and organized environment. To automate 

the process of extracting program behavior from JSON reports, a Python-based system was 

developed. For this study, malware samples were obtained from VirusTotal and submitted for 

dynamic analysis of their behavior via the Cuckoo Sandbox online platform. The resulting 

reports were extracted and converted to comma-separated value (CSV) file format. Table 1 

presents the features extracted from the JSON reports. 

Table 1: Raw Features Extracted by Cuckoo 

Features Data type Features Data type 

e_cp   

e_lfarlc   

e_crlc   

e_minalloc   

e_ovno   

e_cparhdr   

Machine 

e_oemid   

e_oeminfo   

TimeDateStamp 

map_count 

 lock 

 utime 

stime 

gtime 

cgtime 

Integer 

Integer 

Integer 

Integer 

Integer 

Integer 

Integer 

Integer 

Integer 

Integer 

Integer 

Integer 

 Integer 

Integer 

hiwater_rss 

total_vm 

shared_vm 

exec_vm 

shared_vm 

exec_vm 

reserved_vm 

nr_ptes 

end_data 

last_interval 

nvcsw 

nivcsw 

min_flt 

maj_flt 

 

 

Integer 

Integer 

Integer 

Integer 

Integer 

Integer 

Integer 

Integer 

Integer 

Integer 

Integer 

Integer 

Integer 

Integer 

 

 

The Cuckoo analysis scoring indicate the degree of maliciousness or malevolence of the 

analyzed file. The score is determined by measuring how many malicious actions are 

performed. Cuckoo applies a collection of simplified malicious behavior, known as signatures, 
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to automatically identify malicious behavior of interest. Every signature has a score, which 

specifies the severity of the completed action. Some instances of what Cuckoo’s signatures can 

be used for are: 

1. To recognize a given malware family of interest by separating certain distinct behaviors, 

such as file names or mutexes; 

2. To spot some modifications of interest performed on the system by the malware, like 

installation of drivers; 

3. To identify specific malware groups, like Ransomware or Banking Trojan by separating 

unique actions frequently carried out by such malware groups; and 

4. To categorize samples into malware/unknown. 

In the Cuckoo graphical user interface (GUI), there are colors of green, yellow and red 

indicators to define and specify reliability or severity of the file. The green color is used for 

samples with a score of 4 and below, the yellow is used for file samples with a score between 

4 to 7, while the red indicator defines scores of 7 to 10. Figures 3 and 4 define the cuckoo Color 

indicators of Report Severity and Scoring Systems, respectively. 

 

 

Figure 3: Color indicators of Report Severity 

 

 

Figure 4: The Cuckoo Scoring Systems 

The malware sample files executed by the cuckoo in the cuckoo sandbox were in the format of 

a PE file with the maximum execution time of each sample set at 432 seconds. For instance, 

one of the files submitted for analysis on August 8, 2024, at about 2.00 am, using the internet 

routing, completed its execution on the same day at about 2.47 am, resulting in a total execution 

time of a total of 432 seconds. As soon as the malware executable was submitted to the cuckoo 

environment, a software suite known as process monitor traces and monitors the changes in the 

file in terms of file system activities, registry modifications, and network communications. 

Cuckoo obtained and captured the screenshots taken during the executions of malware samples; 

logs all the system calls performed by all the processes generated by malware; and records files 

that are being deleted or created by the malicious sample that is being executed. Figures 5 and 

6 show the analysis and the cuckoo logs, respectively, generated during the malicious sample 

executions. 
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Analyzer Log 

2024-08-8 15:40:26,015 [analyzer] DEBUG: Starting analyzer from: C:\tmpdrdvpd 

2024-08-8 15:40:26,015 [analyzer] DEBUG: Pipe server name: \??\PIPE\iOcPrsftFVkSbRfR 

2024-08-8 15:40:26,015 [analyzer] DEBUG: Log pipe server name: 

\??\PIPE\wqJbKZEyPmVUlqtEvUJKFVuyKNvQE 

2024-08-8 15:40:26,265 [analyzer] DEBUG: Started auxiliary module Curtain 

2024-08-8 15:40:26,265 [analyzer] DEBUG: Started auxiliary module DbgView 

2024-08-8 15:40:26,796 [analyzer] DEBUG: Started auxiliary module Disguise 

2024-08-8 15:40:27,000 [analyzer] DEBUG: Loaded monitor into process with pid 508 

2024-08-8 15:40:27,000 [analyzer] DEBUG: Started auxiliary module 

DumpTLSMasterSecrets 

2024-08-8 15:40:27,000 [analyzer] DEBUG: Started auxiliary module Human 

2024-08-8 15:40:27,000 [analyzer] DEBUG: Started auxiliary module InstallCertificate 

2024-08-8 15:40:27,000 [analyzer] DEBUG: Started auxiliary module Reboot 

2024-08-8 15:40:27,062 [analyzer] DEBUG: Started auxiliary module RecentFiles 

2024-08-8 15:40:27,078 [analyzer] DEBUG: Started auxiliary module Screenshots 

2024-08-8 15:40:27,078 [analyzer] DEBUG: Started auxiliary module Sysmon 

2024-08-8 15:40:27,078 [analyzer] DEBUG: Started auxiliary module LoadZer0m0n 

2024-08-8 15:40:27,171 [lib.api.process] INFO: Successfully executed process from path 

'C:\\Windows\\System32\\rundll32.exe' with arguments 

[u'C:\\Users\\ADMINI~1\\AppData\\Local\\Temp\\7596418c84293532ad0596428a7285ac49

0b65f680cb836a68ac537e36e6bd52.dll,DllMain'] and pid 884 

2024-08-8 15:40:27,375 [analyzer] DEBUG: Loaded monitor into process with pid 884 

Figure 5: Analyzer Log generated by the sandbox during the malware analysis  

Cuckoo Log 

2024-08-8 16:44:07,029 [cuckoo.core.scheduler] INFO: Task #2069709: acquired machine 

win7x6412 (label=win7x6412) 

2024-08-8 16:44:07,030 [cuckoo.core.resultserver] DEBUG: Now tracking machine 

192.168.168.212 for task #2069709 

2024-08-8 16:44:07,556 [cuckoo.machinery.virtualbox] DEBUG:Starting vm win7x6412 

2024-08-8 16:44:08,078 [cuckoo.machinery.virtualbox] DEBUG: Restoring virtual machine 

win7x6412 to vmcloa 

2024-08-8 16:44:20,890 [cuckoo.core.guest] DEBUG: win7x6412: not ready yet 

2024-08-8 16:44:21,895 [cuckoo.core.guest] DEBUG: win7x6412: not ready yet 

2024-08-8 16:44:25,334 [cuckoo.core.resultserver] DEBUG: Task #2069709 is sending a 

BSON stream 

For every malware sample file submitted for analysis, its dynamic features were extracted and 

stored in a report format. The features extracted were assembled and organized in a particular 

file, understandable for the machine learning library. A total number of 19,611 datasets 

comprising 9,806 malware and 9,805 benign files were generated and stored in a comma-

separated variable (csv) file format to be used by the machine learning model for classification. 

The 9,806 malware files were drawn from 10 different malware types’ (family) collection 

counts as described in table 2. The table demonstrates the distribution of the various malware 

families as identified by 15 AntiVirus engines used by the cuckoo agent as malicious, on 15 
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different events. That is, the feature set generated from the analysis report comprises 5.0% 

Ransom-Ryuk; 6.3% Trojan.Inject4.9283; 6.7% Win.Ransomware.Ryuk-6688842-0; 4.5% 

Ransom:Win64/Jabaxsta.B; 5.7% Ransom:Win32/Genasom.ali1000102; 3.6% Packer; 4.5% 

W64/Ryuk.223E!tr.ranso; 3.7% HEUR/AGEN.1110011; 4.5%  

Virus:Gen:Variant.Ransom.Ryuk.19; 5.2% Trojan.Generic,; and 49.99% Benign (Goodware), 

ensuing an equal number of 50% malicious and approximately 50.0% Goodware or benign 

files. Figure 5 illustrates the distribution of the top eleven malware family’s samples in our 

datasets in terms of sample counts, while figure 37 illustrates the percentage distribution of the 

counts.  

Table 2: Malware Types (Families) Collection Counts 

S/N Malware Sample Type Sample Counts  Percentage  

1 Ransom-Ryuk 981 5.0% 

2 Trojan.Inject4. 1236 6.3% 

3 Win.Ransomware.Ryuk 1314 6.7% 

4 Ransom:Win64/Jabaxsta.B 883 4.5% 

5 Ransom:Win32/Genasom.ali 1118 5.7% 

6 Packer 706 3.6% 

7 W64/Ryuk.223E!tr.ransom 883 4.5% 

8 HEUR/AGEN 726 3.7% 

9 Virus:Gen:Variant.Ransom.Ryuk.19 883 4.5% 

10 Trojan.Generic 1020 5.2% 

11 Benign (Goodware) 9806 50.0% 

 Total  19,612 100% 

 

 

Figure 5: Distribution of top 11 Malware family’s samples Counts 
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Figure 6: Percentage Distribution of top 11 Malware family’s samples Counts 

 

1. Procmon Setup and Results 

A similar lab was set up for Process Monitor (Procmon) that also runs ten (10) isolated 

processes.  The process activities like file system, network communications, and registry keys 

were monitored, and the process name; operation types performed; operation class (file system, 

registry keys or network communications). The number of experimental runs and duration of 

process execution was captured and recorded in Tables 3 and 4, respectively. The purpose of 

the experiment is to use the procmon as well as its functionalities to track and identify the actual 

activities of malware - the registry keys it modifies, files it creates, its network activities, and 

more, and connect each action captured by a procmon to an operation. Process Monitor 

analyzes processes such as update, RegSetValue, RegCreatKey, RegDeletKey, 

FileSystemControl, read-write (WriteFile, ReadFile, and CreatFile), or delete registry records. 

Figure 7 shows the GUI for File activities operations during the process execution by the 

Procmon.  

 

5.00% 6.30% 6.70% 4.50% 5.70% 3.60% 4.50% 3.70% 4.50% 5.20%

50.00%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

Percentage 

Ransom-Ryuk Trojan.Inject4. Win.Ransomware.Ryuk

Ransom:Win64/Jabaxsta.B Ransom:Win32/Genasom.ali Packer

W64/Ryuk.223E!tr.ransom HEUR/AGEN Virus:Gen:Variant.Ransom.Ryuk.19

Trojan.Generic Benign (Goodware)



British Journal of Computer, Networking and Information Technology  

ISSN: 2689-5315 

Volume 7, Issue 4, 2024 (pp. 8-26) 

19  Article DOI: 10.52589/BJCNIT-FCEDOOMY 

  DOI URL: https://doi.org/10.52589/BJCNIT-FCEDOOMY 

www.abjournals.org 

 

      Figure 7: File System Actives Operations during Process Execution 

 

Table 3: Different Runs of Malware Analysis in Cuckoo Sandbox 

Sample  

Count 

File Type File 

size 

Date 

submitted 

Time 

Cost 

(in 

Secs.) 

Malware detected Cucko

o Score 

(10) 

1 ASCII text 164 kb 4-2-2021 169 VB:Trojan.Valyria.36

55 

8.7 

2 MS Word 1.9MB 4-2-2021 297 Trojan.Generic 7.1 

3 HTML   Doc. 9.6 kb 4-2-2021 521 Trojan.inject 10 

4 PE+ executable 432 kb 6-4-2021 432 Packer 10 

5  5.0 MB 6-4-2021 76 VB:Trojan.Valyria.36

55 

10 

6 PE executable 

(dll) 

5.0 MB 6-4-2021 76 Ransom-Ryuk 10 

7 HTML Doc 9.6 kb 6-4-2021 530 Trojan.HTML.Phishin

g.Paypal.AF 

10 

8 PE+ executable 171 kb 6-4-2021 432 HEUR/AGEN.111001

1 

10 

9 PE+ executable 45.7 kb 15-4-2021 118 Virus:Gen:Variant.Ra

nsom.Ryuk.19 

10 

10 PE+ executable 171.5 

kb 

6-4-2021 432 Ryuk.Payloader 10 
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Table 4: Procmon File System and Registry Operations 

Process  

Count 

Date  ProcessName Operation  

Type  

Class  Result  Time 

Cost 

(Secs) 

1 29/4/21 MS Word Readfile  File 

System 

Success  552 

2 29/4/21 Explorer.exe RegReadKey Registry Success 989 

3 29/4/21 AirtelBroadBand.e

xe  

RegOpenKey Registry Success 223 

4 29/4/21 Ctfmon.exe ReadFile FileSyste

m 

Success 339 

5 29/4/21 WinWord.exe ReadFile FileSyste

m 

Success  503 

6 29/4/21 Svchost.exe CreatFile FileSyste

m 

Success 716 

7 29/4/21 AirtelBroadBand.e

xe 

CreatFile FileSyste

m 

Success 588 

8 29/4/21 Liveupdate.exe ReadFile FileSyste

m 

Success 615 

9 29/4/21 MoMpEng.exe CloseFile FileSyste

m 

Success 332 

10 29/4/21 MoMpEng.exe FileSystenContr

ol 

FileSyste

m 

Success 334 

 

DISCUSSION OF RESULTS 

Figure 8 is a graphical interpretation of the divergence in execution time of malware analysis 

between cuckoo sandbox, and the File system activities and registry operations, which are 

common operations performed by malware - monitored using Procmon. The target is to 

correlate the time expended to execute the malware analysis process between the two analyses 

tools and extrapolate the best option amongst them.  The graph shows that it takes more 

execution time to analyze malware operations in Procmon, whether it be Registry activities, 

network communication, or file system activities than it does when analyzing malware 

behavior using the cuckoo sandbox. This implies that the cuckoo sandbox is a more efficient, 

suitable, and faster malware analysis tool when compared to other advanced tools. The graph 

shows that Cuckoo consistently outperforms Procmon in terms of execution time, completing   

much more quickly and steadily over each of the ten process runs. Procmon has significantly 

longer and more fluctuating execution times, peaking at 989 seconds, while Cuckoo maintains 

execution durations around 530 seconds, suggesting superior efficiency and consistency.  
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Figure 8: Comparison of Malware Execution Time Cost (Secs) Between Cuckoo Sandbox and 

Procmon 

To further substantiate the above results, a comprehensive research survey on machine learning 

(ML) based malware detection and classification that deployed cuckoo sandbox was 

conducted, and the respective accuracy obtained, and Receiver Operating Characteristics 

(ROC) achieved were recorded. Equivalent survey was conducted separately on ML based 

detection and classification models that utilized procmon as sandbox. In the survey, the 

following were found; the work of Zhao, Li, Wu and Yang (2018), which evaluated supervised 

machine learning techniques for dynamic malware detection using different models, deployed 

cuckoo sandbox for the analysis, and the result shows that 99.0% accuracy level and ROC of 

0.99 (99%) were achieved.  Chumachenko (2017), in his Bachelor of Engineering degree 

research conducted in 2017, tried to find out the best feature extraction, feature representation, 

and classification methods that could result in the best accuracy when used on the top of 

Cuckoo Sandbox. The author used different machine learning models and his result indicated 

that accuracy of 96.8% and ROC of 0.90 (90%) were realized when implemented in SVM. 

Catak et al. (2020) studied a deep learning-based Sequential model for malware analysis using 

Windows exe API calls and used cuckoo sandbox for the dynamic analysis. The study which 

focuses on metamorphic malware, recorded an accuracy level of 97.9% when implemented 

using RBF-SVM, with no particular emphasis on ROC. Another research by Fui, Asmawi, and 

Hussin (2020) explored dynamic malware detection in cloud platforms. The authors who tested 

their framework using different classifiers also deployed a cuckoo sandbox for the malware 

analysis. The accuracy level of 93.0 and ROC of 0.96 (96%) when implemented using Random 

Forest.  Denzer, Shalaginov and Dyrkolbotn (2020) conducted research on intelligent windows 

malware type detection based on multiple sources of dynamic characteristics and, deployed 

cuckoo sandbox for the malware analysis. The authors implemented their detection model 

using different classifiers and obtained an accuracy level of 98.6% and ROC of 0.98 (98%). A 

study carried out by Abbadi, Al-Bustanji, Al-kasassbeh (2020), on robust intelligent malware 

detection using light GBM algorithm to detect IoT botnet attacks fast, in order to end botnet 

activity before spreading to any new network device, analyzed the malware dynamically using 

cuckoo sandbox. The study achieved accuracy level of 99.0% and a ROC of 1.00.  The 

summary findings from the survey are recorded in table 5.  

1 2 3 4 5 6 7 8 9 10
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Table 5: Cuckoo Sandbox based Malware Analysis and Detection Survey  

S/N Author (s) Research Title Year Accuracy (%) ROC 

1 Chumachenko Machine Learning Based 

Malware Detection 

2017 96.8 0.90 

2 Zhao, Li, Wu and 

Yang 

Evaluation supervised machine 

learning techniques for dynamic 

malware detection 

2018 99.0 0.99 

3 Catak, et al. Deep Learning Based Sequential 

model for malware analysis using 

Windows exe API calls 

2020 97.7 NA 

4 Fui, Asmawi and 

Hussin 

A Dynamic Malware Detection 

in Cloud Platform 

2020 90.3 0.96 

5 Denzer, 

Shalaginov and 

Dyrkolbotn 

Intelligent Windows Malware 

Type Detection based on 

Multiple Sources of Dynamic 

Characteristics 

2020 98.6 0.98 

6 Abbadi, Al-

Bustanji, Al-

kasassbeh 

Robust Intelligent Malware 

Detection using Light GBM 

Algorithm on IoT 

2020 99.0 1 

7 The Present 

(Current) 

Research 

Machine Learning-Based 

Framework for Malware 

Detection and Classification 

2022 99.94 1.00 

NA: Not available; ROC: Receiver Operating Characteristics 

In the same way, not less than six (6) machine learning-based malware detection and 

classification that deployed process monitors were surveyed. The findings showed that Kardile 

(2017) conducted a study on Crypto-Ransomware Analysis and Detection Using Process 

Monitor and implemented using different machine learning models. Accuracy of 96% was 

recorded with reference to ROC. Asimov (2919), on the other hand, applied machine learning 

techniques for Android malware detection and classification using procmon to monitor the 

malware behavior. The study achieved an accuracy level of 88.0% and a ROC/AUC of 0.79.  

In another research paper, Gandotra, Bansal and Sofat (2014) investigated malware analysis 

and classification by applying the process monitor to study the activities of the malware. The 

authors tested their model and recorded an accuracy of 96.0% with no reference to ROC/AUC. 

Furthermore, Moussaileb et al. (2019) performed a ransomware Network Traffic Analysis for 

Pre-Encryption Alert, using procmon as the malware behavioral analysis tool. The study 

achieved an accuracy of 95.5% and a ROC of 0.95. Singh (2017) classified malware using 

image representation. Procmon was deployed for the malware analysis and registered accuracy 

of 95.4% and ROC of 0.95. Barre, Gehani and Yegneswaran (2019) applied mining data 

provenance to detect advanced persistent threats. To analyze the behavioral characteristics of 

the malware, the authors deployed the process monitor (Procmon), and achieved accuracy of 

85.0% and ROC of 0.90. To conclude the survey, the work of Tobiyama et al. (2016), which 

seeks to detect malware with Deep Neural Network Using Process Behaviour was reviewed. 

The results showed that 96% of accuracy was obtained with a ROC of 0.96. Table 4 summarizes 

the survey. Figures 32 and 33 illustrate the performance indexes of the two analysis tools in 

terms of accuracy and ROC, respectively. An accuracy level of 90 and above indicates better 
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performance of the machine, while a ROC value close to 1 signals a superior performance of 

the machine. Proper review and analysis of the results obtained (figures 9 – 10) shows that 

malware analysis and detection performed using cuckoo sandbox produces a more superior 

performance, when compared to other sandboxes. As evident in figure 42, cuckoo sandbox 

recorded a high-performance index with an average accuracy of 99.35%, whereas, the analysis 

performed using Procmon recorded a moderate performance index with an average accuracy 

of 94.48%. By the same token, the cuckoo sandbox recorded a higher precision rate with an 

average of 0.97 ROC, defined by TPR and TNR; meanwhile, Procmon logged an average ROC 

of 0.91.    

Table 4: Process Monitor Based Malware Analysis and Detection 

S/No Author (Year) Study title Accuracy ROC 

1  

 Kardile (2017) 

Crypto Ransomware Analysis 

and Detection Using Process 

Monitor 

96.0 NA 

2 Asimov (2919) Applying machine learning 

techniques for Android 

malware detection and 

classification 

88.0 0.79 

3 Gandotra, Bansal 

and  Sofat (2014) 

Malware Analysis and 

Classification: A Survey 

96.0 NA 

4 Singh (2017) Malware Classification using 

Image 

Representation  

95.4 0.95 

5 Moussaileb, et al 

(2019) 

Ransomware Network Traffic 

Analysis for Pre-Encryption 

Alert (2019) 

95.5 0.95 

6 Tobiyama, et al 

(2016) 

Malware Detection with Deep 

Neural Network Using Process 

Behavior (2016) 

96.0 0.96 

7 Barre, Gehani and 

Yegneswaran (2019) 

Mining Data Provenance to 

Detect Advanced Persistent 

Threats. 

85.0 0.90 

NA: Not available; ROC: Receiver Operating Characteristics. 
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Figure 9: Comparison of Accuracy between Cuckoo and Procmon 

 

Figure 10: Comparative Performance Assessment between Cuckoo and Procmon in terms of 

ROC 
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CONCLUSION  

To combat the evolving threat of malware, researchers use various techniques, with sandboxing 

being one of the most crucial. Sandboxing involves running and analyzing code in a secure, 

isolated environment to prevent potential threats from infiltrating networks, typically through 

static and dynamic analysis. This method captures essential data like system calls and network 

traffic to understand malware behavior. The findings in this study show that Cuckoo 

consistently outperforms Procmon in terms of execution time, completing much more quickly 

and steadily over each of the ten process runs. Procmon has significantly longer and more 

fluctuating execution times, peaking at 989 seconds, while Cuckoo maintains execution 

durations around 530 seconds, suggesting superior efficiency and consistency. A further survey 

of six machine learning-based malware detection studies comparing Process Monitor and 

Cuckoo Sandbox found that Cuckoo consistently outperformed Procmon, achieving higher 

accuracy (99.35% vs. 94.48%) and a superior ROC value (0.97 vs. 0.91). 

 

REFERENCES  

Alam, S., Horspool,  R. N., Traore, I. and Sogukpinar, I. (2015). A framework for Metamorphic 

Malware Analysis and Real Time Detection. Computers & Security Journal. 48, 212–

233. 

Bencherchali, N. (2020). Troubleshooting with the Windows Sysinternals Tools, 2ed. eBook 

978-0-13-398653-2. https://nasbench.medium.com/hunting-malware-with-windows-

sysinternals-process monitor-e67476f44514. Accessed on April 29, 2021 at 17.05 pm. 

Bhardwaj, A., Avasthi, V.  Sastry, H. and Subrahmanyam, G. V. B. (2016). Ransomware 

Digital Extortion: A Rising New Age Threat. Indian Journal of Science and Technology, 

9(14), 1-5. DOI: 10.17485/ijst/2016/v9i14/82936.  

Bragen, S. R. (2015). Malware Detection Through Opcode Sequence Analysis Using Machine 

Learning. Master’s Thesis, Gjøvik University College. 

Chumachenko, K. (2017). Machine Learning Methods for Malware Detection and 

Classification. 

CISCO (2018). What Is the Difference: Viruses, Worms, Trojans, and Bots? CISCO Security 

Portal. Online at https://tools.cisco.com/security/center/resources/virus_differences. 

Retrieved on September 4th, 2019 at 5:10 pm.   

Cuckoo Foundation (2015). Automated Malware Analysis - Cuckoo Sandbox.. Available: 

http://www.cuckoosandbox.org/. Retrieved on 13- February- 2021 at 12.51 am.  

Cuckoo Foundation (2019). Automated Malware Analysis - Cuckoo Sandbox.. Available: 

http://www.cuckoosandbox.org/. Retrieved on 13- February- 2021 at 12.51 am.  

Egele, M., Scholte, T., Kirda, E., Kruegel, C. (2008). A Survey on Automated Dynamic 

Malware-Analysis Techniques And Tools. ACM Computing Survey 2008, 44 (6). 

Fox, N. (2021). 11 Best Malware Analysis Tools and Their Features. Varonis Threat Detection 

online at:  https://www.varonis.com. Retrieved on April 29, 2021: 14.04 pm. 

Harrington, D. (2021). The Ultimate Guide to Procmon: Everything you need to know. 

Varonis. 

https://www.varonis.com/blog/procmon#:~:text=Procmon's%20main%20functionality

%20is%20known,other%20forms%20of%20malicious%20activity.  

Ijaz, M., Durad, M. H., & Ismail, M. (2019). Static and Dynamic malware analysis using 

machine learning. In 2019 16th International Bhurban Conference on Applied Sciences 

https://nasbench.medium.com/hunting-malware-with-windows-sysinternals-process%20monitor-e67476f44514
https://nasbench.medium.com/hunting-malware-with-windows-sysinternals-process%20monitor-e67476f44514
https://tools.cisco.com/security/center/resources/virus_differences
http://www.cuckoosandbox.org/
http://www.cuckoosandbox.org/
https://www.varonis.com/
https://www.varonis.com/blog/procmon#:~:text=Procmon's%20main%20functionality%20is%20known,other%20forms%20of%20malicious%20activity
https://www.varonis.com/blog/procmon#:~:text=Procmon's%20main%20functionality%20is%20known,other%20forms%20of%20malicious%20activity
https://www.varonis.com/blog/procmon#:~:text=Procmon's%20main%20functionality%20is%20known,other%20forms%20of%20malicious%20activity
https://www.varonis.com/blog/procmon#:~:text=Procmon's%20main%20functionality%20is%20known,other%20forms%20of%20malicious%20activity
https://www.varonis.com/blog/procmon#:~:text=Procmon's%20main%20functionality%20is%20known,other%20forms%20of%20malicious%20activity


British Journal of Computer, Networking and Information Technology  

ISSN: 2689-5315 

Volume 7, Issue 4, 2024 (pp. 8-26) 

26  Article DOI: 10.52589/BJCNIT-FCEDOOMY 

  DOI URL: https://doi.org/10.52589/BJCNIT-FCEDOOMY 

www.abjournals.org 

and Technology (IBCAST) (pp. 687-691). IEEE. 

https://doi.org/10.1109/IBCAST.2019.8667136. 

Kim, C. W.(2018). NtMalDetect: A Machine Learning Approach to Malware Detection Using 

Native API System Calls. arXiv preprint arXiv:1802.05412 (2018). 

Mills, A. and Leggs, P. (2020). Investigating Anti-Evasion Malware Triggers Using Automated 

Sandbox Recognition Techniques. Journal of Cybersecurity and Privacy, MDPI. 1,  19-

39. 

Muhovic, T. (2020). Behavioural Analysis of Malware Using Custom Sandbox Environments. 

Unpublished Master's Degree Thesis. Networks and Distributed Systems Aalborg 

University https://www.aau.dk. 

Or-Meir, O., Nissim, N., Elovici, Y., Rokach, L. (2019). Dynamic Malware Analysis in the 

Modern Era - A state of the Art Survey. ACM Computing Survey 2019,(52),1–48. 

Pektas, A. (2015). Behavior Based Malware Classification Using Online Machine Learning. 

(Unpublished DoctoralThesis), Grenoble Alpes (2015). 

Raj, R., Naveen, S., Subhikshan, R., & Tarun, S. (2024, January 27). Malware analysis using 

sandbox. SSRN. https://ssrn.com/abstract=4708146 or 

http://dx.doi.org/10.2139/ssrn.4708146. 

Sinha, A. K., & Sai, S. (2023). Integrated Malware Analysis Sandbox for Static and Dynamic 

Analysis. In 2023 14th International Conference on Computing Communication and 

Networking Technologies (ICCCNT) (pp. 1-5). IEEE. 

https://doi.org/10.1109/ICCCNT56998.2023.10306805. 

Walker, A. and Sengupta, S. (2020). Malware Family Fingerprinting Through Behavioral 

Analysis.  In the IEEE International Conference on Intelligence and Security Informatics 

(ISI), 1-5. 

https://doi.org/10.1109/IBCAST.2019.8667136
https://www.aau.dk/
http://dx.doi.org/10.2139/ssrn.4708146
https://doi.org/10.1109/ICCCNT56998.2023.10306805

