
British Journal of Computer, Networking and Information Technology

ISSN: 2689-5315

Volume 7, Issue 4, 2024 (pp. 8-26)

8 Article DOI: 10.52589/BJCNIT-FCEDOOMY

 DOI URL: https://doi.org/10.52589/BJCNIT-FCEDOOMY

www.abjournals.org

ABSTRACT: Malware has grown to be an intricate and dynamic threat

to cybersecurity. Researchers and cybersecurity specialists use a range

of methods to analyze and comprehend malware in order to effectively

counter this threat. The malware sandbox is one of the most crucial

instruments in this battle. Insights gained by evaluating malware in a

sandbox aid in the creation of effective detection. Finding a sandbox that

is both highly precise, efficient and affordable is a challenging task. This

study compares the effectiveness of Cuckoo Sandbox and Procmon, two

of the most popular sandboxes, in the efficient implementation of

malware analysis and detection. A Windows 10 Pro window-based

computer with a 4 GHz CPU, 16 GB RAM, 8 cores, and a 320 GB hard

drive (HDD) was set up. An Oracle virtual machine (VM) for guests

was set up and launched. Using the Oracle VM, a virtual operating

system (Windows 10 Pro). Furthermore, Yara-Python was deployed and

JSON reports, a system built on Python was created. The results show

that Cuckoo consistently outperforms Procmon in terms of execution

time, completing much more quickly and steadily over each of the ten

process runs. Procmon has significantly longer and more fluctuating

execution times, peaking at 989 seconds, while Cuckoo maintains

execution durations around 530 seconds, suggesting superior efficiency

and consistency. Six (6) machine learning-based methods for classifying

and detecting malware that used Cuckoo sandbox and process monitor

were surveyed. Different performance indicators were found in the six-

machine learning-based malware detection and classification studies

that Process Monitor was used to survey. A review of six machine

learning-based malware detection and classification studies using both

Process Monitor and Cuckoo Sandbox indicated that Cuckoo Sandbox

consistently delivered better performance. The findings show that

machine learning-based malware detection conducted with Cuckoo

attained a higher average accuracy of 99.35% compared to 94.48% with

Procmon, along with a superior ROC value of 0.97 (97%) versus 0.91

(91%) for Procmon.

KEYWORDS: Cuckoo sandbox process monitor; Sandboxing;

Malware analysis.

CUCKOO SANDBOX AND PROCESS MONITOR (PROCMON) PERFORMANCE

EVALUATION IN LARGE-SCALE MALWARE DETECTION AND ANALYSIS

Umoh Enoima Essien1 and Sylvester I. Ele2*

1Department of Computer Science, University of Cross River State.

Email: enoimaumoh@unicross.edu.ng.

2Department of Computer Science, University of Calabar.

Email: elesly@unical.edu.ng

*Corresponding Author’s Email: elesly@unical.edu.ng

Cite this article:

Essien, U. E., Ele, S. I. (2024),

Cuckoo Sandbox and Process

Monitor (Procmon)

Performance Evaluation in

Large-Scale Malware

Detection and Analysis.

British Journal of Computer,

Networking and Information

Technology 7(4), 8-26. DOI:

10.52589/BJCNIT-

FCEDOOMY

Manuscript History

Received: 13 Jul 2024

Accepted: 24 Sep 2024

Published: 4 Oct 2024

Copyright © 2024 The Author(s).

This is an Open Access article

distributed under the terms of
Creative Commons Attribution-

NonCommercial-NoDerivatives

4.0 International (CC BY-NC-ND
4.0), which permits anyone to

share, use, reproduce and

redistribute in any medium,

provided the original author and

source are credited.

mailto:enoimaumoh@unicross.edu.ng
mailto:elesly@unical.edu.ng
mailto:elesly@unical.edu.ng

British Journal of Computer, Networking and Information Technology

ISSN: 2689-5315

Volume 7, Issue 4, 2024 (pp. 8-26)

9 Article DOI: 10.52589/BJCNIT-FCEDOOMY

 DOI URL: https://doi.org/10.52589/BJCNIT-FCEDOOMY

www.abjournals.org

INTRODUCTION

Malware has developed into a complex and ever evolving threat to cybersecurity. To

effectively combat this threat, researchers and cybersecurity experts apply a variety of

techniques to examine and understand malware. In this fight, the malware sandbox is one of

the most important tools (Raj et al., 2024). Sandboxing is a cybersecurity technique that

involves running, observing, and analyzing code within a secure, isolated network environment

that mimics an end-user operating system. This method is designed to prevent potential threats

from infiltrating the network and is often used to evaluate untested or untrusted code. By

constraining the code to a controlled test environment, sandboxing contains any harmful

actions or infections, protecting the host machine and operating system from damage (). In

order to isolate suspicious files or programs in a secure, segregated environment and prevent

them from compromising real systems, malware analysis in a sandbox is performed. Static

analysis is usually used to examine file attributes, and dynamic analysis is used to observe

behavior while the process is running. To accomplish this, it must be suspended using Docker

in a virtual environment where it cannot damage the system (Sinha & Sai, 2023). Sandbox

environments capture system calls, network traffic, and modifications to the file system and

registry, providing vital information on malware functionalities (Ijaz, Durad & Ismail, 2019).

Malware features extracted from the analysis reports (AR) generated by the sandbox captures

the behavioral data of each sample. A thorough understanding of the sandbox's functionality

and the structure of its reports is essential (Chumachenko, 2017). There are several malware

analysis tools and platforms the cybersecurity community have developed to help curb the

persistent surge of cyber threats by enabling security analysts to gather and analyze malware

samples, unravel their capabilities, and guide investigations. They include Joe Sandbox,

Procmon or Process Monitor (windows Sysinternals), Process Explorer (windows

Sysinternals), Autoruns (windows Sysinternals), Anubis, CWSandbox, ProDot, x64dbg,

Process Hacker, Pestudio, Ghidra, and Fiddler, among others. (Fox, 2021). Of all these

sandboxing tools, Cuckoo sandbox and Procmon (process monitor) from Windows

Sysinternals are open source and are extensively deployed by malware analysts. The aim of

this paper is to evaluate the performance of Cuckoo Sandbox with Procmon in effective

implementation of malware analysis and detection.

REVIEW OF RELATED LITERATURE

Malware Analysis

The goal of malware analysis is to investigate the characteristics and features of malicious

software, so as to help malware analysts understand better the nature of intended malware

attacks and provide protection against future attacks (Mills & Leggs, 2020). According to Alam

et al. (2015), there are three approaches in malware detection, known as static analysis, which

scrutinize and examine software source code (Egele et al., 2008), and dynamic analysis, which

examines system behavior during the execution of malware (Or-Meir et al., 2019), and the third

being hybrid analysis. The malware sample is not run during static analysis, whereas during

dynamic analysis the malware sample runs (Bragen, 2015).

British Journal of Computer, Networking and Information Technology

ISSN: 2689-5315

Volume 7, Issue 4, 2024 (pp. 8-26)

10 Article DOI: 10.52589/BJCNIT-FCEDOOMY

 DOI URL: https://doi.org/10.52589/BJCNIT-FCEDOOMY

www.abjournals.org

a. Dynamic Analysis: Dynamic analysis of malware is achieved by examining the

activities and dealings of a program while the program is executing in a secured environment.

The indicator, functionality, and behaviors of the program that enable one to determine if a

program is benign or malicious, can be identified during dynamic analysis (Pektas, 2015). The

procedure for dynamic analysis includes three steps: to set up and cleanse an environment; to

run the malware; and to examine and document (log) malware behavior. The log or documented

files supply factual information concerning files that are opened, accessed, or called (Arends

& Kerstin, 2018). One of the approaches of dynamic analysis is the automatic dynamic

analysis, in which the program behavior is traced by using classical tools like Cuckoo and

CWSandbox (Cuckoo, 2019; Kim, 2018). These tools take as input, a file, and afterward

execute the file using a virtual environment.

b. Static Analysis: The static analysis technique refers to the analysis of the PE files

(Portable Executable files) without running the code. Binary packers, like ASP Pack Shell and

UPX are generally used by malware, in order to keep away from being analyzed (Zaki &

Humphrey, 2014). A Portable Executable file has to be unpacked prior to being analyzed. In

static analysis, nearly every program employed the Windows API calls to interact with the

operating system. A typical example is the OpenFileW, which is a Windows API in

Kernel32.dll that generates a novel file or opens an existing file. So, API calls expose the

behavior of programs and can be regarded as a crucial mark in malware detection. For example,

Windows API calls such as "LoadLibrary" "WriteProcessMemory", and

"CreateRemoteThread" are assumed behavior manifested by malware for DLL injection into a

process, whereas hardly ever come together in a genuine setting.

1. Cuckoo Sandbox

It is common knowledge that to engage the machine learning algorithms in any problem, it is

critical to represent the data in some form. Consequently, Cuckoo Sandbox was adopted.

Malware features extracted from the analysis reports (AR) generated by the sandbox, which

describes the behavioral data of every sample, were preprocessed. Understanding the

functionality of the sandbox and the report’s structure is very essential (Chumachenko, 2017).

Cuckoo is one of the most important sandbox environments for malware analysis. Cuckoo

Sandbox is an open-source malware analysis sandbox that generates a comprehensive and

exhaustive report of the behavior of files within seconds. Per Cuckoo Foundation (2015)

supports different categories of file formats, including DLL files, URLs and HTML files, PDF,

ZIP files, Microsoft Office documents, CPL files, Visual Basic (VB) scripts, python files,

Macro enabled files, Java JAR and PHP scripts. The Cuckoo Sandbox provides platforms for

automated analysis of chary files (Cuckoo Foundation, 2015). Cuckoo sandbox has an

extremely modifiable flexible architecture, permitting the sandbox to be utilized as a standalone

application and can also be embedded into larger frameworks. Figure 1 is the architecture of

the Cuckoo sandbox, showing the cuckoo host, Analysis Guests, Analysis VM, n (n = 1, 2, 3),

and internet or sinkhole.

British Journal of Computer, Networking and Information Technology

ISSN: 2689-5315

Volume 7, Issue 4, 2024 (pp. 8-26)

11 Article DOI: 10.52589/BJCNIT-FCEDOOMY

 DOI URL: https://doi.org/10.52589/BJCNIT-FCEDOOMY

www.abjournals.org

Figure 1: Cuckoo Sandbox Architecture (Cuckoo Foundation, 2015)

After generating the behavior of the file, the Sandbox makes a decision on the severity of

maleficence of the file using certain existing signatures. The reports generated from the

sandbox are represented as a JSON file. Cuckoo Sandbox affords analysts the opportunity of

automating the analysis of suspicious samples. With dynamic (behavioral) analysis, hash

comparisons, and other unified tools, identification of malware and determination of the kind

of indicators to look for in their production environment to determine the presence of

malevolent actions on a system becomes possible. Cuckoo, as an automated malware analysis

tool, provides data concerning the behavior of malicious files; however, it does not actively

classify malware using these observations. Alternatively, Cuckoo can be set up to allow files

to be submitted to VirusTotal (Walker & Sengupta, 2020). Cuckoo sandbox contains built-in

logging and monitoring during a malware sample analysis. In the cuckoo setup, as seen in

figure 12 above, the cuckoo generates its peculiar network that links the host machine with the

virtual machines from which malware analysis is performed. Executing virtual machines in a

separate network permits cuckoo to execute malware safely and analyze it without the fear of

malware infecting the machine that is external to the isolated virtual machine (Muhovic, 2020).

Through Cuckoo, malware files can be directly submitted through a web UI (user interface)

from which analysis results can also be viewed in a virtual environment. Cuckoo core can

receive malware samples and several options can be selected with regards to what happens

with the virtual machine (VM). As formulated by Muhovic (2020), figure 2 illustrates a typical

malware analysis process in the Cuckoo sandbox.

British Journal of Computer, Networking and Information Technology

ISSN: 2689-5315

Volume 7, Issue 4, 2024 (pp. 8-26)

12 Article DOI: 10.52589/BJCNIT-FCEDOOMY

 DOI URL: https://doi.org/10.52589/BJCNIT-FCEDOOMY

www.abjournals.org

Figure 2: Malware Analysis Process in Cuckoo

2. Process Monitor

Process Monitor is a sophisticated monitoring tool for Windows that provides real-time insights

into file system, registry, and process/thread activities. It merges the functionalities of the

legacy Sysinternals utilities, Filemon and Regmon, while offering numerous enhancements.

These include advanced and non-destructive filtering, detailed event properties like session IDs

and user names, accurate process information, complete thread stacks with integrated symbol

support for each operation, and the ability to log simultaneously to a file, among other features.

These powerful capabilities make Process Monitor an essential tool for system troubleshooting

and malware detection (Spiceworks, 2024). The main functionality of Procmon is known as

event capture, which allows system administrators to see and monitor all activity in addition to

historical event logs in order to identify dangerous activities such as viruses and malware

(Harrington, 2021). In the event of malware infiltration to a system, Procmon works in

performance with data alert tools to help initiate the appropriate procedures and reactions. It is

also similar to open-source malware detection and extraction tools like Process Hacker.

Procmon is a potent analysis tool that uses a kernel driver to monitor and capture profiling

events, network activity, registry activity, File system activity, and processes, including threads

activity on a given system (Bencherchali, 2020). Process Monitor analyzes processes such as

update, read-write (WriteFile, ReadFile, and CreatFile), or delete registry records. This action

enables the analyst who reviews the file to determine the method in which malware executes

its actions and instigates the attack (Bhardwaj, Avasthi, Sastry & Subrahmanyam, 2016).

British Journal of Computer, Networking and Information Technology

ISSN: 2689-5315

Volume 7, Issue 4, 2024 (pp. 8-26)

13 Article DOI: 10.52589/BJCNIT-FCEDOOMY

 DOI URL: https://doi.org/10.52589/BJCNIT-FCEDOOMY

www.abjournals.org

RESEARCH METHODOLOGY

To evaluate the efficiency and accuracy of the cuckoo sandbox with process monitor, we ran a

comparative study of the two analysis tools (Cuckoo and Procmon) and their respective

execution time was recorded. Accuracy level was also used as a criterion to determine which

one of these tools is more reliable in malware detection and classification when applying

specific machine learning models.

Experimental Design and Results

To achieve the goal of the study, Cuckoo sandbox lab was set up with ten (10) different runs

of malware analysis with different file types and sizes. After each run, the type of malware

detected; the severity level of the malware captured by cuckoo threat level score; and the

execution time was recorded (table 5.1). A similar lab was set up for Process Monitor

(Procmon) that also runs ten (10) isolated processes. The process activities like file system,

network communications, and registry keys were monitored, and the process name; operation

types performed; operation class (file system, registry keys or network communications); and

the duration of process execution were captured and recorded (Table 5.2).

We deployed a window-based PC (Window 10 Pro current version) with 4 GHz CPU, 16 GB

RAM, 8 Cores and 320 GB Hard Disk Drive (HDD)

To deploy the host, we set up the experiment as follows:

1. Deploy Windows 10 Pro

2. Launch and configure the guests VM (Oracle VM VirtualBox)

3. Installation of Ubuntu server 20.04LTE (on guest OS)

4. System upgrade

5. Creation of dedicated user for Cuckoo Sandbox

6. Deployment of Cuckoo Sandbox. To configure the Cuckoo Sandbox, we:

● Added MongoDB

● Added repository

● Created database for Cuckoo

● Deployed Yara-Python

● Configured of VM

British Journal of Computer, Networking and Information Technology

ISSN: 2689-5315

Volume 7, Issue 4, 2024 (pp. 8-26)

14 Article DOI: 10.52589/BJCNIT-FCEDOOMY

 DOI URL: https://doi.org/10.52589/BJCNIT-FCEDOOMY

www.abjournals.org

For the virtual machine (VM) and guest system, we deployed the Oracle VM VirtualBox which

was setup and configured as follows:

Operating System - Window 10 (32-bit)

Based Memory - 904MB

Accelerator - PAE/NX, Hyper-V Paravirtualization

Video Memory - 130 MB

Graphic Controller - VBox SVGA

Storage Controller - STAT

SATA Port0: - Windows 10 vdi (Normal 50.0 GB)

SATA Port1: - [Optical Drive] Windows.iso (3.86 GB)

Network adapter: - Intel PRO/1000 MT Desktop (NAT)

Cuckoo Sandbox Configuration and Results

 The Cuckoo Sandbox and its dependencies were installed using Oracle VM Virtualbox. Its

purpose was to execute Portable Executable files (PEs) and generate JSON reports that show

the behavior of the executed programs in a controlled and organized environment. To automate

the process of extracting program behavior from JSON reports, a Python-based system was

developed. For this study, malware samples were obtained from VirusTotal and submitted for

dynamic analysis of their behavior via the Cuckoo Sandbox online platform. The resulting

reports were extracted and converted to comma-separated value (CSV) file format. Table 1

presents the features extracted from the JSON reports.

Table 1: Raw Features Extracted by Cuckoo

Features Data type Features Data type

e_cp

e_lfarlc

e_crlc

e_minalloc

e_ovno

e_cparhdr

Machine

e_oemid

e_oeminfo

TimeDateStamp

map_count

 lock

 utime

stime

gtime

cgtime

Integer

Integer

Integer

Integer

Integer

Integer

Integer

Integer

Integer

Integer

Integer

Integer

 Integer

Integer

hiwater_rss

total_vm

shared_vm

exec_vm

shared_vm

exec_vm

reserved_vm

nr_ptes

end_data

last_interval

nvcsw

nivcsw

min_flt

maj_flt

Integer

Integer

Integer

Integer

Integer

Integer

Integer

Integer

Integer

Integer

Integer

Integer

Integer

Integer

The Cuckoo analysis scoring indicate the degree of maliciousness or malevolence of the

analyzed file. The score is determined by measuring how many malicious actions are

performed. Cuckoo applies a collection of simplified malicious behavior, known as signatures,

British Journal of Computer, Networking and Information Technology

ISSN: 2689-5315

Volume 7, Issue 4, 2024 (pp. 8-26)

15 Article DOI: 10.52589/BJCNIT-FCEDOOMY

 DOI URL: https://doi.org/10.52589/BJCNIT-FCEDOOMY

www.abjournals.org

to automatically identify malicious behavior of interest. Every signature has a score, which

specifies the severity of the completed action. Some instances of what Cuckoo’s signatures can

be used for are:

1. To recognize a given malware family of interest by separating certain distinct behaviors,

such as file names or mutexes;

2. To spot some modifications of interest performed on the system by the malware, like

installation of drivers;

3. To identify specific malware groups, like Ransomware or Banking Trojan by separating

unique actions frequently carried out by such malware groups; and

4. To categorize samples into malware/unknown.

In the Cuckoo graphical user interface (GUI), there are colors of green, yellow and red

indicators to define and specify reliability or severity of the file. The green color is used for

samples with a score of 4 and below, the yellow is used for file samples with a score between

4 to 7, while the red indicator defines scores of 7 to 10. Figures 3 and 4 define the cuckoo Color

indicators of Report Severity and Scoring Systems, respectively.

Figure 3: Color indicators of Report Severity

Figure 4: The Cuckoo Scoring Systems

The malware sample files executed by the cuckoo in the cuckoo sandbox were in the format of

a PE file with the maximum execution time of each sample set at 432 seconds. For instance,

one of the files submitted for analysis on August 8, 2024, at about 2.00 am, using the internet

routing, completed its execution on the same day at about 2.47 am, resulting in a total execution

time of a total of 432 seconds. As soon as the malware executable was submitted to the cuckoo

environment, a software suite known as process monitor traces and monitors the changes in the

file in terms of file system activities, registry modifications, and network communications.

Cuckoo obtained and captured the screenshots taken during the executions of malware samples;

logs all the system calls performed by all the processes generated by malware; and records files

that are being deleted or created by the malicious sample that is being executed. Figures 5 and

6 show the analysis and the cuckoo logs, respectively, generated during the malicious sample

executions.

British Journal of Computer, Networking and Information Technology

ISSN: 2689-5315

Volume 7, Issue 4, 2024 (pp. 8-26)

16 Article DOI: 10.52589/BJCNIT-FCEDOOMY

 DOI URL: https://doi.org/10.52589/BJCNIT-FCEDOOMY

www.abjournals.org

Analyzer Log

2024-08-8 15:40:26,015 [analyzer] DEBUG: Starting analyzer from: C:\tmpdrdvpd

2024-08-8 15:40:26,015 [analyzer] DEBUG: Pipe server name: \??\PIPE\iOcPrsftFVkSbRfR

2024-08-8 15:40:26,015 [analyzer] DEBUG: Log pipe server name:

\??\PIPE\wqJbKZEyPmVUlqtEvUJKFVuyKNvQE

2024-08-8 15:40:26,265 [analyzer] DEBUG: Started auxiliary module Curtain

2024-08-8 15:40:26,265 [analyzer] DEBUG: Started auxiliary module DbgView

2024-08-8 15:40:26,796 [analyzer] DEBUG: Started auxiliary module Disguise

2024-08-8 15:40:27,000 [analyzer] DEBUG: Loaded monitor into process with pid 508

2024-08-8 15:40:27,000 [analyzer] DEBUG: Started auxiliary module

DumpTLSMasterSecrets

2024-08-8 15:40:27,000 [analyzer] DEBUG: Started auxiliary module Human

2024-08-8 15:40:27,000 [analyzer] DEBUG: Started auxiliary module InstallCertificate

2024-08-8 15:40:27,000 [analyzer] DEBUG: Started auxiliary module Reboot

2024-08-8 15:40:27,062 [analyzer] DEBUG: Started auxiliary module RecentFiles

2024-08-8 15:40:27,078 [analyzer] DEBUG: Started auxiliary module Screenshots

2024-08-8 15:40:27,078 [analyzer] DEBUG: Started auxiliary module Sysmon

2024-08-8 15:40:27,078 [analyzer] DEBUG: Started auxiliary module LoadZer0m0n

2024-08-8 15:40:27,171 [lib.api.process] INFO: Successfully executed process from path

'C:\\Windows\\System32\\rundll32.exe' with arguments

[u'C:\\Users\\ADMINI~1\\AppData\\Local\\Temp\\7596418c84293532ad0596428a7285ac49

0b65f680cb836a68ac537e36e6bd52.dll,DllMain'] and pid 884

2024-08-8 15:40:27,375 [analyzer] DEBUG: Loaded monitor into process with pid 884

Figure 5: Analyzer Log generated by the sandbox during the malware analysis

Cuckoo Log

2024-08-8 16:44:07,029 [cuckoo.core.scheduler] INFO: Task #2069709: acquired machine

win7x6412 (label=win7x6412)

2024-08-8 16:44:07,030 [cuckoo.core.resultserver] DEBUG: Now tracking machine

192.168.168.212 for task #2069709

2024-08-8 16:44:07,556 [cuckoo.machinery.virtualbox] DEBUG:Starting vm win7x6412

2024-08-8 16:44:08,078 [cuckoo.machinery.virtualbox] DEBUG: Restoring virtual machine

win7x6412 to vmcloa

2024-08-8 16:44:20,890 [cuckoo.core.guest] DEBUG: win7x6412: not ready yet

2024-08-8 16:44:21,895 [cuckoo.core.guest] DEBUG: win7x6412: not ready yet

2024-08-8 16:44:25,334 [cuckoo.core.resultserver] DEBUG: Task #2069709 is sending a

BSON stream

For every malware sample file submitted for analysis, its dynamic features were extracted and

stored in a report format. The features extracted were assembled and organized in a particular

file, understandable for the machine learning library. A total number of 19,611 datasets

comprising 9,806 malware and 9,805 benign files were generated and stored in a comma-

separated variable (csv) file format to be used by the machine learning model for classification.

The 9,806 malware files were drawn from 10 different malware types’ (family) collection

counts as described in table 2. The table demonstrates the distribution of the various malware

families as identified by 15 AntiVirus engines used by the cuckoo agent as malicious, on 15

British Journal of Computer, Networking and Information Technology

ISSN: 2689-5315

Volume 7, Issue 4, 2024 (pp. 8-26)

17 Article DOI: 10.52589/BJCNIT-FCEDOOMY

 DOI URL: https://doi.org/10.52589/BJCNIT-FCEDOOMY

www.abjournals.org

different events. That is, the feature set generated from the analysis report comprises 5.0%

Ransom-Ryuk; 6.3% Trojan.Inject4.9283; 6.7% Win.Ransomware.Ryuk-6688842-0; 4.5%

Ransom:Win64/Jabaxsta.B; 5.7% Ransom:Win32/Genasom.ali1000102; 3.6% Packer; 4.5%

W64/Ryuk.223E!tr.ranso; 3.7% HEUR/AGEN.1110011; 4.5%

Virus:Gen:Variant.Ransom.Ryuk.19; 5.2% Trojan.Generic,; and 49.99% Benign (Goodware),

ensuing an equal number of 50% malicious and approximately 50.0% Goodware or benign

files. Figure 5 illustrates the distribution of the top eleven malware family’s samples in our

datasets in terms of sample counts, while figure 37 illustrates the percentage distribution of the

counts.

Table 2: Malware Types (Families) Collection Counts

S/N Malware Sample Type Sample Counts Percentage

1 Ransom-Ryuk 981 5.0%

2 Trojan.Inject4. 1236 6.3%

3 Win.Ransomware.Ryuk 1314 6.7%

4 Ransom:Win64/Jabaxsta.B 883 4.5%

5 Ransom:Win32/Genasom.ali 1118 5.7%

6 Packer 706 3.6%

7 W64/Ryuk.223E!tr.ransom 883 4.5%

8 HEUR/AGEN 726 3.7%

9 Virus:Gen:Variant.Ransom.Ryuk.19 883 4.5%

10 Trojan.Generic 1020 5.2%

11 Benign (Goodware) 9806 50.0%

 Total 19,612 100%

Figure 5: Distribution of top 11 Malware family’s samples Counts

Ransom-
Ryuk

Trojan.In
ject4.

Win.Ran
somware

.Ryuk

Ransom:
Win64/J
abaxsta.

B

Ransom:
Win32/G
enasom.

ali

Packer

W64/Ry
uk.223E!
tr.ranso

m

HEUR/A
GEN

Virus:Ge
n:Variant
.Ransom.
Ryuk.19

Trojan.G
eneric

Sample Counts 981 1236 1314 883 1118 706 883 726 883 1020

981

1236
1314

883

1118

706

883

726

883
1020

0

200

400

600

800

1000

1200

1400

1600

Sa
m

p
le

 C
o

u
n

ts

Malware Families

Sample Count Distribution of Malware Families

British Journal of Computer, Networking and Information Technology

ISSN: 2689-5315

Volume 7, Issue 4, 2024 (pp. 8-26)

18 Article DOI: 10.52589/BJCNIT-FCEDOOMY

 DOI URL: https://doi.org/10.52589/BJCNIT-FCEDOOMY

www.abjournals.org

Figure 6: Percentage Distribution of top 11 Malware family’s samples Counts

1. Procmon Setup and Results

A similar lab was set up for Process Monitor (Procmon) that also runs ten (10) isolated

processes. The process activities like file system, network communications, and registry keys

were monitored, and the process name; operation types performed; operation class (file system,

registry keys or network communications). The number of experimental runs and duration of

process execution was captured and recorded in Tables 3 and 4, respectively. The purpose of

the experiment is to use the procmon as well as its functionalities to track and identify the actual

activities of malware - the registry keys it modifies, files it creates, its network activities, and

more, and connect each action captured by a procmon to an operation. Process Monitor

analyzes processes such as update, RegSetValue, RegCreatKey, RegDeletKey,

FileSystemControl, read-write (WriteFile, ReadFile, and CreatFile), or delete registry records.

Figure 7 shows the GUI for File activities operations during the process execution by the

Procmon.

5.00% 6.30% 6.70% 4.50% 5.70% 3.60% 4.50% 3.70% 4.50% 5.20%

50.00%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

Percentage

Ransom-Ryuk Trojan.Inject4. Win.Ransomware.Ryuk

Ransom:Win64/Jabaxsta.B Ransom:Win32/Genasom.ali Packer

W64/Ryuk.223E!tr.ransom HEUR/AGEN Virus:Gen:Variant.Ransom.Ryuk.19

Trojan.Generic Benign (Goodware)

British Journal of Computer, Networking and Information Technology

ISSN: 2689-5315

Volume 7, Issue 4, 2024 (pp. 8-26)

19 Article DOI: 10.52589/BJCNIT-FCEDOOMY

 DOI URL: https://doi.org/10.52589/BJCNIT-FCEDOOMY

www.abjournals.org

 Figure 7: File System Actives Operations during Process Execution

Table 3: Different Runs of Malware Analysis in Cuckoo Sandbox

Sample

Count

File Type File

size

Date

submitted

Time

Cost

(in

Secs.)

Malware detected Cucko

o Score

(10)

1 ASCII text 164 kb 4-2-2021 169 VB:Trojan.Valyria.36

55

8.7

2 MS Word 1.9MB 4-2-2021 297 Trojan.Generic 7.1

3 HTML Doc. 9.6 kb 4-2-2021 521 Trojan.inject 10

4 PE+ executable 432 kb 6-4-2021 432 Packer 10

5 5.0 MB 6-4-2021 76 VB:Trojan.Valyria.36

55

10

6 PE executable

(dll)

5.0 MB 6-4-2021 76 Ransom-Ryuk 10

7 HTML Doc 9.6 kb 6-4-2021 530 Trojan.HTML.Phishin

g.Paypal.AF

10

8 PE+ executable 171 kb 6-4-2021 432 HEUR/AGEN.111001

1

10

9 PE+ executable 45.7 kb 15-4-2021 118 Virus:Gen:Variant.Ra

nsom.Ryuk.19

10

10 PE+ executable 171.5

kb

6-4-2021 432 Ryuk.Payloader 10

British Journal of Computer, Networking and Information Technology

ISSN: 2689-5315

Volume 7, Issue 4, 2024 (pp. 8-26)

20 Article DOI: 10.52589/BJCNIT-FCEDOOMY

 DOI URL: https://doi.org/10.52589/BJCNIT-FCEDOOMY

www.abjournals.org

Table 4: Procmon File System and Registry Operations

Process

Count

Date ProcessName Operation

Type

Class Result Time

Cost

(Secs)

1 29/4/21 MS Word Readfile File

System

Success 552

2 29/4/21 Explorer.exe RegReadKey Registry Success 989

3 29/4/21 AirtelBroadBand.e

xe

RegOpenKey Registry Success 223

4 29/4/21 Ctfmon.exe ReadFile FileSyste

m

Success 339

5 29/4/21 WinWord.exe ReadFile FileSyste

m

Success 503

6 29/4/21 Svchost.exe CreatFile FileSyste

m

Success 716

7 29/4/21 AirtelBroadBand.e

xe

CreatFile FileSyste

m

Success 588

8 29/4/21 Liveupdate.exe ReadFile FileSyste

m

Success 615

9 29/4/21 MoMpEng.exe CloseFile FileSyste

m

Success 332

10 29/4/21 MoMpEng.exe FileSystenContr

ol

FileSyste

m

Success 334

DISCUSSION OF RESULTS

Figure 8 is a graphical interpretation of the divergence in execution time of malware analysis

between cuckoo sandbox, and the File system activities and registry operations, which are

common operations performed by malware - monitored using Procmon. The target is to

correlate the time expended to execute the malware analysis process between the two analyses

tools and extrapolate the best option amongst them. The graph shows that it takes more

execution time to analyze malware operations in Procmon, whether it be Registry activities,

network communication, or file system activities than it does when analyzing malware

behavior using the cuckoo sandbox. This implies that the cuckoo sandbox is a more efficient,

suitable, and faster malware analysis tool when compared to other advanced tools. The graph

shows that Cuckoo consistently outperforms Procmon in terms of execution time, completing

much more quickly and steadily over each of the ten process runs. Procmon has significantly

longer and more fluctuating execution times, peaking at 989 seconds, while Cuckoo maintains

execution durations around 530 seconds, suggesting superior efficiency and consistency.

British Journal of Computer, Networking and Information Technology

ISSN: 2689-5315

Volume 7, Issue 4, 2024 (pp. 8-26)

21 Article DOI: 10.52589/BJCNIT-FCEDOOMY

 DOI URL: https://doi.org/10.52589/BJCNIT-FCEDOOMY

www.abjournals.org

Figure 8: Comparison of Malware Execution Time Cost (Secs) Between Cuckoo Sandbox and

Procmon

To further substantiate the above results, a comprehensive research survey on machine learning

(ML) based malware detection and classification that deployed cuckoo sandbox was

conducted, and the respective accuracy obtained, and Receiver Operating Characteristics

(ROC) achieved were recorded. Equivalent survey was conducted separately on ML based

detection and classification models that utilized procmon as sandbox. In the survey, the

following were found; the work of Zhao, Li, Wu and Yang (2018), which evaluated supervised

machine learning techniques for dynamic malware detection using different models, deployed

cuckoo sandbox for the analysis, and the result shows that 99.0% accuracy level and ROC of

0.99 (99%) were achieved. Chumachenko (2017), in his Bachelor of Engineering degree

research conducted in 2017, tried to find out the best feature extraction, feature representation,

and classification methods that could result in the best accuracy when used on the top of

Cuckoo Sandbox. The author used different machine learning models and his result indicated

that accuracy of 96.8% and ROC of 0.90 (90%) were realized when implemented in SVM.

Catak et al. (2020) studied a deep learning-based Sequential model for malware analysis using

Windows exe API calls and used cuckoo sandbox for the dynamic analysis. The study which

focuses on metamorphic malware, recorded an accuracy level of 97.9% when implemented

using RBF-SVM, with no particular emphasis on ROC. Another research by Fui, Asmawi, and

Hussin (2020) explored dynamic malware detection in cloud platforms. The authors who tested

their framework using different classifiers also deployed a cuckoo sandbox for the malware

analysis. The accuracy level of 93.0 and ROC of 0.96 (96%) when implemented using Random

Forest. Denzer, Shalaginov and Dyrkolbotn (2020) conducted research on intelligent windows

malware type detection based on multiple sources of dynamic characteristics and, deployed

cuckoo sandbox for the malware analysis. The authors implemented their detection model

using different classifiers and obtained an accuracy level of 98.6% and ROC of 0.98 (98%). A

study carried out by Abbadi, Al-Bustanji, Al-kasassbeh (2020), on robust intelligent malware

detection using light GBM algorithm to detect IoT botnet attacks fast, in order to end botnet

activity before spreading to any new network device, analyzed the malware dynamically using

cuckoo sandbox. The study achieved accuracy level of 99.0% and a ROC of 1.00. The

summary findings from the survey are recorded in table 5.

1 2 3 4 5 6 7 8 9 10

Procmon 552 989 223 339 503 716 588 615 332 334

Cuckoo 169 297 521 432 76 76 530 432 118 432

No. of Runs 1 2 3 4 5 6 7 8 9 10

169
297

521
432

76 76

530
432

118

432

552

989

223 339

503

716

588
615

332

334

0

200

400

600

800

1000

1200

1400

EX
EC

U
TI

O
N

 T
IM

E
(S

e
cs

)

NO. OF SAMPLE/PROCESS RUNS

No. of Runs Cuckoo Procmon

British Journal of Computer, Networking and Information Technology

ISSN: 2689-5315

Volume 7, Issue 4, 2024 (pp. 8-26)

22 Article DOI: 10.52589/BJCNIT-FCEDOOMY

 DOI URL: https://doi.org/10.52589/BJCNIT-FCEDOOMY

www.abjournals.org

Table 5: Cuckoo Sandbox based Malware Analysis and Detection Survey

S/N Author (s) Research Title Year Accuracy (%) ROC

1 Chumachenko Machine Learning Based

Malware Detection

2017 96.8 0.90

2 Zhao, Li, Wu and

Yang

Evaluation supervised machine

learning techniques for dynamic

malware detection

2018 99.0 0.99

3 Catak, et al. Deep Learning Based Sequential

model for malware analysis using

Windows exe API calls

2020 97.7 NA

4 Fui, Asmawi and

Hussin

A Dynamic Malware Detection

in Cloud Platform

2020 90.3 0.96

5 Denzer,

Shalaginov and

Dyrkolbotn

Intelligent Windows Malware

Type Detection based on

Multiple Sources of Dynamic

Characteristics

2020 98.6 0.98

6 Abbadi, Al-

Bustanji, Al-

kasassbeh

Robust Intelligent Malware

Detection using Light GBM

Algorithm on IoT

2020 99.0 1

7 The Present

(Current)

Research

Machine Learning-Based

Framework for Malware

Detection and Classification

2022 99.94 1.00

NA: Not available; ROC: Receiver Operating Characteristics

In the same way, not less than six (6) machine learning-based malware detection and

classification that deployed process monitors were surveyed. The findings showed that Kardile

(2017) conducted a study on Crypto-Ransomware Analysis and Detection Using Process

Monitor and implemented using different machine learning models. Accuracy of 96% was

recorded with reference to ROC. Asimov (2919), on the other hand, applied machine learning

techniques for Android malware detection and classification using procmon to monitor the

malware behavior. The study achieved an accuracy level of 88.0% and a ROC/AUC of 0.79.

In another research paper, Gandotra, Bansal and Sofat (2014) investigated malware analysis

and classification by applying the process monitor to study the activities of the malware. The

authors tested their model and recorded an accuracy of 96.0% with no reference to ROC/AUC.

Furthermore, Moussaileb et al. (2019) performed a ransomware Network Traffic Analysis for

Pre-Encryption Alert, using procmon as the malware behavioral analysis tool. The study

achieved an accuracy of 95.5% and a ROC of 0.95. Singh (2017) classified malware using

image representation. Procmon was deployed for the malware analysis and registered accuracy

of 95.4% and ROC of 0.95. Barre, Gehani and Yegneswaran (2019) applied mining data

provenance to detect advanced persistent threats. To analyze the behavioral characteristics of

the malware, the authors deployed the process monitor (Procmon), and achieved accuracy of

85.0% and ROC of 0.90. To conclude the survey, the work of Tobiyama et al. (2016), which

seeks to detect malware with Deep Neural Network Using Process Behaviour was reviewed.

The results showed that 96% of accuracy was obtained with a ROC of 0.96. Table 4 summarizes

the survey. Figures 32 and 33 illustrate the performance indexes of the two analysis tools in

terms of accuracy and ROC, respectively. An accuracy level of 90 and above indicates better

British Journal of Computer, Networking and Information Technology

ISSN: 2689-5315

Volume 7, Issue 4, 2024 (pp. 8-26)

23 Article DOI: 10.52589/BJCNIT-FCEDOOMY

 DOI URL: https://doi.org/10.52589/BJCNIT-FCEDOOMY

www.abjournals.org

performance of the machine, while a ROC value close to 1 signals a superior performance of

the machine. Proper review and analysis of the results obtained (figures 9 – 10) shows that

malware analysis and detection performed using cuckoo sandbox produces a more superior

performance, when compared to other sandboxes. As evident in figure 42, cuckoo sandbox

recorded a high-performance index with an average accuracy of 99.35%, whereas, the analysis

performed using Procmon recorded a moderate performance index with an average accuracy

of 94.48%. By the same token, the cuckoo sandbox recorded a higher precision rate with an

average of 0.97 ROC, defined by TPR and TNR; meanwhile, Procmon logged an average ROC

of 0.91.

Table 4: Process Monitor Based Malware Analysis and Detection

S/No Author (Year) Study title Accuracy ROC

1

 Kardile (2017)

Crypto Ransomware Analysis

and Detection Using Process

Monitor

96.0 NA

2 Asimov (2919) Applying machine learning

techniques for Android

malware detection and

classification

88.0 0.79

3 Gandotra, Bansal

and Sofat (2014)

Malware Analysis and

Classification: A Survey

96.0 NA

4 Singh (2017) Malware Classification using

Image

Representation

95.4 0.95

5 Moussaileb, et al

(2019)

Ransomware Network Traffic

Analysis for Pre-Encryption

Alert (2019)

95.5 0.95

6 Tobiyama, et al

(2016)

Malware Detection with Deep

Neural Network Using Process

Behavior (2016)

96.0 0.96

7 Barre, Gehani and

Yegneswaran (2019)

Mining Data Provenance to

Detect Advanced Persistent

Threats.

85.0 0.90

NA: Not available; ROC: Receiver Operating Characteristics.

British Journal of Computer, Networking and Information Technology

ISSN: 2689-5315

Volume 7, Issue 4, 2024 (pp. 8-26)

24 Article DOI: 10.52589/BJCNIT-FCEDOOMY

 DOI URL: https://doi.org/10.52589/BJCNIT-FCEDOOMY

www.abjournals.org

Figure 9: Comparison of Accuracy between Cuckoo and Procmon

Figure 10: Comparative Performance Assessment between Cuckoo and Procmon in terms of

ROC

1 2 3 4 5 6 7

CUCKOO 96.8 99 97.7 90.3 98.6 99 99.94

PROCMON 96 88 96 95.4 95.5 96 85

9
6

.8 9
9

9
7

.7

9
0

.3

9
8

.6

9
9 9
9

.9
4

9
6

8
8

9
6

9
5

.4

9
5

.5

9
6

8
5

A
C

C
U

R
A

C
Y

(
%

)

SAMPLE COUNT

COMPARATIVE EVALUATION - ACCURACY (%)

CUCKOO PROCMON

1 2 3 4 5 6 7

CUCKOO 0.9 0.99 0 0.96 0.98 1 1

PROCMON 0 0.79 0 0.95 0.95 0.96 0.9

0
.9 0

.9
9

0

0
.9

6

0
.9

8

1 1

0

0
.7

9

0

0
.9

5

0
.9

5

0
.9

6

0
.9

COMPARATIVE EVALUATION - ROC

CUCKOO PROCMON

British Journal of Computer, Networking and Information Technology

ISSN: 2689-5315

Volume 7, Issue 4, 2024 (pp. 8-26)

25 Article DOI: 10.52589/BJCNIT-FCEDOOMY

 DOI URL: https://doi.org/10.52589/BJCNIT-FCEDOOMY

www.abjournals.org

CONCLUSION

To combat the evolving threat of malware, researchers use various techniques, with sandboxing

being one of the most crucial. Sandboxing involves running and analyzing code in a secure,

isolated environment to prevent potential threats from infiltrating networks, typically through

static and dynamic analysis. This method captures essential data like system calls and network

traffic to understand malware behavior. The findings in this study show that Cuckoo

consistently outperforms Procmon in terms of execution time, completing much more quickly

and steadily over each of the ten process runs. Procmon has significantly longer and more

fluctuating execution times, peaking at 989 seconds, while Cuckoo maintains execution

durations around 530 seconds, suggesting superior efficiency and consistency. A further survey

of six machine learning-based malware detection studies comparing Process Monitor and

Cuckoo Sandbox found that Cuckoo consistently outperformed Procmon, achieving higher

accuracy (99.35% vs. 94.48%) and a superior ROC value (0.97 vs. 0.91).

REFERENCES

Alam, S., Horspool, R. N., Traore, I. and Sogukpinar, I. (2015). A framework for Metamorphic

Malware Analysis and Real Time Detection. Computers & Security Journal. 48, 212–

233.

Bencherchali, N. (2020). Troubleshooting with the Windows Sysinternals Tools, 2ed. eBook

978-0-13-398653-2. https://nasbench.medium.com/hunting-malware-with-windows-

sysinternals-process monitor-e67476f44514. Accessed on April 29, 2021 at 17.05 pm.

Bhardwaj, A., Avasthi, V. Sastry, H. and Subrahmanyam, G. V. B. (2016). Ransomware

Digital Extortion: A Rising New Age Threat. Indian Journal of Science and Technology,

9(14), 1-5. DOI: 10.17485/ijst/2016/v9i14/82936.

Bragen, S. R. (2015). Malware Detection Through Opcode Sequence Analysis Using Machine

Learning. Master’s Thesis, Gjøvik University College.

Chumachenko, K. (2017). Machine Learning Methods for Malware Detection and

Classification.

CISCO (2018). What Is the Difference: Viruses, Worms, Trojans, and Bots? CISCO Security

Portal. Online at https://tools.cisco.com/security/center/resources/virus_differences.

Retrieved on September 4th, 2019 at 5:10 pm.

Cuckoo Foundation (2015). Automated Malware Analysis - Cuckoo Sandbox.. Available:

http://www.cuckoosandbox.org/. Retrieved on 13- February- 2021 at 12.51 am.

Cuckoo Foundation (2019). Automated Malware Analysis - Cuckoo Sandbox.. Available:

http://www.cuckoosandbox.org/. Retrieved on 13- February- 2021 at 12.51 am.

Egele, M., Scholte, T., Kirda, E., Kruegel, C. (2008). A Survey on Automated Dynamic

Malware-Analysis Techniques And Tools. ACM Computing Survey 2008, 44 (6).

Fox, N. (2021). 11 Best Malware Analysis Tools and Their Features. Varonis Threat Detection

online at: https://www.varonis.com. Retrieved on April 29, 2021: 14.04 pm.

Harrington, D. (2021). The Ultimate Guide to Procmon: Everything you need to know.

Varonis.

https://www.varonis.com/blog/procmon#:~:text=Procmon's%20main%20functionality

%20is%20known,other%20forms%20of%20malicious%20activity.

Ijaz, M., Durad, M. H., & Ismail, M. (2019). Static and Dynamic malware analysis using

machine learning. In 2019 16th International Bhurban Conference on Applied Sciences

https://nasbench.medium.com/hunting-malware-with-windows-sysinternals-process%20monitor-e67476f44514
https://nasbench.medium.com/hunting-malware-with-windows-sysinternals-process%20monitor-e67476f44514
https://tools.cisco.com/security/center/resources/virus_differences
http://www.cuckoosandbox.org/
http://www.cuckoosandbox.org/
https://www.varonis.com/
https://www.varonis.com/blog/procmon#:~:text=Procmon's%20main%20functionality%20is%20known,other%20forms%20of%20malicious%20activity
https://www.varonis.com/blog/procmon#:~:text=Procmon's%20main%20functionality%20is%20known,other%20forms%20of%20malicious%20activity
https://www.varonis.com/blog/procmon#:~:text=Procmon's%20main%20functionality%20is%20known,other%20forms%20of%20malicious%20activity
https://www.varonis.com/blog/procmon#:~:text=Procmon's%20main%20functionality%20is%20known,other%20forms%20of%20malicious%20activity
https://www.varonis.com/blog/procmon#:~:text=Procmon's%20main%20functionality%20is%20known,other%20forms%20of%20malicious%20activity

British Journal of Computer, Networking and Information Technology

ISSN: 2689-5315

Volume 7, Issue 4, 2024 (pp. 8-26)

26 Article DOI: 10.52589/BJCNIT-FCEDOOMY

 DOI URL: https://doi.org/10.52589/BJCNIT-FCEDOOMY

www.abjournals.org

and Technology (IBCAST) (pp. 687-691). IEEE.

https://doi.org/10.1109/IBCAST.2019.8667136.

Kim, C. W.(2018). NtMalDetect: A Machine Learning Approach to Malware Detection Using

Native API System Calls. arXiv preprint arXiv:1802.05412 (2018).

Mills, A. and Leggs, P. (2020). Investigating Anti-Evasion Malware Triggers Using Automated

Sandbox Recognition Techniques. Journal of Cybersecurity and Privacy, MDPI. 1, 19-

39.

Muhovic, T. (2020). Behavioural Analysis of Malware Using Custom Sandbox Environments.

Unpublished Master's Degree Thesis. Networks and Distributed Systems Aalborg

University https://www.aau.dk.

Or-Meir, O., Nissim, N., Elovici, Y., Rokach, L. (2019). Dynamic Malware Analysis in the

Modern Era - A state of the Art Survey. ACM Computing Survey 2019,(52),1–48.

Pektas, A. (2015). Behavior Based Malware Classification Using Online Machine Learning.

(Unpublished DoctoralThesis), Grenoble Alpes (2015).

Raj, R., Naveen, S., Subhikshan, R., & Tarun, S. (2024, January 27). Malware analysis using

sandbox. SSRN. https://ssrn.com/abstract=4708146 or

http://dx.doi.org/10.2139/ssrn.4708146.

Sinha, A. K., & Sai, S. (2023). Integrated Malware Analysis Sandbox for Static and Dynamic

Analysis. In 2023 14th International Conference on Computing Communication and

Networking Technologies (ICCCNT) (pp. 1-5). IEEE.

https://doi.org/10.1109/ICCCNT56998.2023.10306805.

Walker, A. and Sengupta, S. (2020). Malware Family Fingerprinting Through Behavioral

Analysis. In the IEEE International Conference on Intelligence and Security Informatics

(ISI), 1-5.

https://doi.org/10.1109/IBCAST.2019.8667136
https://www.aau.dk/
http://dx.doi.org/10.2139/ssrn.4708146
https://doi.org/10.1109/ICCCNT56998.2023.10306805

