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ABSTRACT: The breadth and dexterity with which plates are 

used in the vast majority of engineering structures necessitates an 

ever-increasing and deeper study focus on plate strength and 

stiffness at the ultimate and serviceability limit states of response. 

From Kirchhoff’s hypothesis, thin plates when subjected to 

transverse loading, bend and experience transverse deflections 

that are typically minor in comparison to the plate thickness. 

However, for thicker plates there is an observed limitation in the 

application of Kirchhoff’s hypothesis, as this theory ignore the 

effect of transverse shear on the deformation of plates. This study 

therefore analytically examines the effect of induced shear on the 

deflection indices of plates with varying aspect ratios, using the 

characteristic orthogonal polynomial function. Result obtained 

shows a close agreement between present study and Kirchhoff’s 

hypothesis for membrane and thin plates. However, a significant 

difference was observed for moderately thick plates and thick 

plates, which clearly shows the effect of transverse shear as the 

plate thickness increases, which further validates the limitations 

of Kirchhoff’s hypothesis for moderately thick as well as thick 

plates.  For an aspect ratio of 1.0 – 2.0 at 0.1 interval, results 

obtained indicated a percentage difference in deflection between 

the Present study and Kirchhoff’s hypothesis to range between -

0.040 – 3.508%, 0.527 – 3.552%, 4.266 – 5.858%, and 13.980 – 

17.011% for membrane, stiffened, moderately thick, and thick 

plates respectively. The validation of the Kirchhoff’s hypothesis 

for membrane as well as stiffened plates by the present study, 

indicates the suitability of the application of the characteristic 

orthogonal polynomial function in the evaluation of the deflection 

of plates regardless of thickness.   
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INTRODUCTION 

Plates are straight, plane, two-dimensional structural components of which one dimension, 

referred to as thickness, h, is much smaller than other dimensions. Bending and transverse shear 

occur when a plate is exposed to a stress perpendicular to its plane. Plates are beam 

generalizations (Blaauwendraad, 2010), however, a beam can only span one way, whereas a 

plate can transport loads in both directions. Geometrically, they are bounded either by straight 

or curve lines. Like their counterparts, the beams, they are not only serve as structural 

components but can also form complete structures such as slab bridges for example. Statically, 

plates have free, simply supported and fixed boundary conditions, including elastic supports 

and elastic restraints or, in some cases, even point supports. 

The extend and dexterity of application of plates in vast majority of engineering structures call 

for ever increase and deeper research interest in the strength and stiffness characteristics of 

plate at the ultimate and serviceability state of response. In 1876, Kirchhoff (1876) published 

an important thesis on thin plates. In this work, he stated two independent basic assumptions 

that are now widely accepted in the plate-bending theory and are known as “Kirchhoff’s 

hypothesis”. This hypothesis permitted the creation of the classical bending theory of thin 

plates which for more than a century has been the basis for the calculation and design of 

structures in various areas of engineering and has yielded important theoretical and numerical 

results. However, Kirchhoff’s theory (Kirchhoff, 1876) had some drawbacks and deficiencies 

which is related to the neglects of the deformation caused by transverse shear, hence, lead to 

considerable errors if applied to moderately thick and thick plates. For such plates, Kirchhoff’s 

classical theory under-estimates deflections and over-estimates frequencies and buckling loads. 

While considering the effect of shear stresses, several solutions for bending and buckling of 

beams and plates were offered by Lokshin et al. (2009).  

Several researchers have endeavored to improve Kirchhoff’s theory and such attempts continue 

to this day. The most important advance in this direction was made by (Senjanović et al 2013, 

Shimpi et al 2018). Their theory takes into account the influence of the transverse shear 

deformation on the deflection of the plate and leads to a sixth-order system of governing 

differential equations, and accordingly, to three boundary conditions on the plate edge. Here it 

is unnecessary to introduce the effective transverse shear force. The theory of (Senjanović et 

al 2013, Shimpi et al 2018) is free from the drawbacks of Kirchhoff’s theory (Kirchhoff, 1876). 

Later, Mindlin (1951) developed first order shear deformation theory considering the effect of 

transverse shear deformation in the analysis of plates. However, this theory does not certify the 

shear stress condition at the top and bottom of the plate’s thickness and require a shear 

correction factor. 

Other notable works on the refined plate theory includes: A formulation based on displacement 

approach was made by (Levinson, 1980) and his theory does not require shear correction factor, 

Also (Oguaghamba, 2015) evaluated the static analysis of an isotropic rectangular plate with 

various boundary conditions using direct variation method according to Ritz to obtain the total 

potential energy of plate, refined nonlinear shear deformation of thick rectangular plate was 

presented by(Ibearugbulem et al 2014) using a modified mixed variational formulation. The 

effects of plate thickness, charge mass, and confinement degree on the dynamic response of 

square plates were explored by Geretto et al. (2015) who conducted experiments to investigate 

the plastic deformations of square plates subjected to fully confined blast loading.  
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For all practical purposes, three-dimensional effects, such as the influence of plate thickness 

on stress components, are typically neglected or dismissed (Kotousov 2010). In general, the 

case of relatively thin and moderately thick plates, including shear deformation in plate 

deflection is advised (Zietlow et al, 2012).  

 

MATERIALS AND METHODS 

Materials 

The research is related to rectangular plate made from isotropic, homogenous and elastic 

materials with constant thickness and yield stress. The constants include, elastic moduli in x, y 

and xy directions. The plate is all round simply supported with a uniformly distributed load 

over the plate’s area. 

Characteristics Orthogonal Polynomials Function. 

The assumed deflection shape of plate normally formulated by inspection and sometimes by 

trial and error until Bhat (Bhat, 1958) proposed a systematic method of constructing such shape 

functions in the form of Characteristic Orthogonal Polynomial (COPs). According to Bhat, the 

stress function for a rectangular plate is assumed to be the product of two independent 

functions; one of which is a pure function of x and the other is a function of y such that: 

∅(𝑥, 𝑦) = 𝐹(𝑥) .  𝐺(𝑦) = ∑ .∞
𝑚=0 ∑ 𝑋𝑚𝑥𝑚𝑌𝑛𝑦𝑛∞

𝑛=0             (1) 

Expressing Equation (1) in the form of non-dimensional parameters, say R and Q for x and y 

axis respectively, we have: 

∅(𝑅, 𝑄) = ∑ .∞
𝑚=0 ∑ 𝐴𝑚𝐵𝑛𝑅𝑚𝑄𝑛∞

𝑛=0              (2) 

Where, 

𝐴𝑚 = 𝑋𝑚𝑎𝑚,            𝐵𝑛 = 𝑌𝑛𝑏𝑛      

For a beam with an arbitrary support condition subjected to uniformly distributed load (UDL) 

along an arbitrary direction, it can be seen that due to this applied load, reactive forces such as, 

moments and reactions will develop at its support and the deflection function for such a beam 

will be a fourth order function. This suggest that the polynomial of Equation (2) is a fourth 

order function. Therefore, expanding Equation (2) to 4th series yields: 

∅(𝑅, 𝑄) = (𝐴0 + 𝐴1𝑅 + 𝐴2𝑅2 + 𝐴3𝑅3 + 𝐴4𝑅4)(𝐵0 + 𝐵1𝑄 + 𝐵2𝑄2 + 𝐵3𝑄3 + 𝐵4𝑄4)     (3) 

Equation (3) represents the general stress function for rectangular plates. 

Where the coefficients 𝐴𝑚 and 𝐵𝑛 of the series are determined from the boundary conditions 

at the edges of the plate. 
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THE GOVERNING EQUATIONS OF THE REFINED PLATE BENDING THEORY 

The governing differential equation of the plate having the effect of transverse shear was given 

by Vesil’ev (1998) as follows: 

𝐷∇2∇2∅ = 𝑃                (4a) 

∇2Ψ − 𝐾2Ψ = 0               (4b) 

And the deflection of the plate is expressed as: 

𝑤 = ∅ −
𝐷

𝐶
∇2∅                 (5) 

Where; 

P is the transverse load on the plate, ∅ is the stress function of the plate, and Ψ is the stream 

function. 

𝐾2 =
2𝐶

𝐷(1−𝜇)
                     (6) 

D is the flexural rigidity of the plate, and it is given as: 

𝐷 =
𝐸ℎ3

12(1−𝜇2)
                (7) 

And C describes the shear stiffness of the plate in the planes xz and yz and it is expressed as: 

𝐶 = 𝐺ℎ                 (8) 

Where 

𝐺 =
𝐸

2(1+𝜇)
                 (9) 

Where 𝜇, h, and E are Poison’s ratio, thickness and Young’s modulus of elasticity of the plate 

respectively. 

Application of the Refined Theory to a SSSS Plate using COPs 

Consider a simply supported rectangular plate with sides a and b subjected to uniform 

distributed load of intensity P(x,y) as shown in Figure 2 below: 
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Figure 2: SSSS Rectangular plate 

 

 

The stress function was obtained from equation (3) using the boundary conditions of SSSS 

plate by Oguaghamba (2015) as: 

∅(𝑅, 𝑄) = 𝐴(𝑅 − 2𝑅3 + 𝑅4)(𝑄 − 2𝑄3 + 𝑄4)      (10) 

Where 𝐴 is the amplitude of the load, R and Q are non-dimensional terms in x and y directions 

respectively. 

Substituting Equation (10) into Equation (4a) yields: 

[
𝑑2

𝑑𝑥2 +
𝑑2

𝑑𝑦2] [
𝑑2

𝑑𝑥2 +
𝑑2

𝑑𝑦2] [(𝐴(𝑅 − 2𝑅3 + 𝑅4)(𝑄 − 2𝑄3 + 𝑄4)] =
𝑃

𝐷
      (11) 

Expressing Equation (11) in non-dimensional terms, where 𝑥 = 𝑎𝑅, 𝑦 = 𝑏𝑄, 𝑑𝑥 = 𝑎𝑑𝑅, and 

 𝑑𝑦 = 𝑏𝑑𝑄, for 0 ≤ 𝑅 ≤ 1; 0 ≤ 𝑄 ≤ 1. Yields: 

[
𝑑2

𝑎2𝑑𝑅2 +
𝑑2

𝑏2𝑑𝑄2] [
𝑑2

𝑎2𝑑𝑅2 +
𝑑2

𝑏2𝑑𝑄2] [𝐴(𝑅 − 2𝑅3 + 𝑅4)(𝑄 − 2𝑄3 + 𝑄4)] =
𝑃

𝐷
        (12) 

Expanding and simplifying Equation (12) and substituting 𝑎 = 𝑟𝑏, yields: 

𝐴 [
24

𝑟4𝑏4
(𝑄 − 2𝑄3 + 𝑄4) +

2

𝑟2𝑏4
(−12𝑅 + 12𝑅2)(−12𝑄 + 12𝑄2) +

24

𝑏4
(𝑅 − 2𝑅3 + 𝑅4)] =

𝑃

𝐷
  

                 

(13) 

Where the aspect ratio 𝑟 =
𝑎

𝑏
   

Therefore, from Equation (13), the amplitude of the load A is: 
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𝐴 =
𝑃𝑏4

𝐷[
24

𝑟4(𝑄−2𝑄3+𝑄4)+
2

𝑟2(−12𝑅+12𝑅2)(−12𝑄+12𝑄2)+24(𝑅−2𝑅3+𝑅4)]
        (14) 

Also substituting Equation (10) into Equation (5) yields: 

𝑤 = 𝐴(𝑅 − 2𝑅3 + 𝑅4)(𝑄 − 2𝑄3 + 𝑄4) −
𝐷

𝐶
[

𝑑2

𝑎2𝑑𝑅2 +
𝑑2

𝑏2𝑑𝑄2] [𝐴(𝑅 − 2𝑅3 + 𝑅4)(𝑄 − 2𝑄3 +

𝑄4)]       (15) 

Simplifying Equation (15) and substituting 𝑎 = 𝑟𝑏, gives: 

𝑤 = 𝐴 [(𝑅 − 2𝑅3 + 𝑅4)(𝑄 − 2𝑄3 + 𝑄4) −
𝐷

𝑏2𝐶
[

1

𝑟2
(−12𝑅 + 12𝑅2)(𝑄 − 2𝑄3 + 𝑄4) +

(𝑅 − 2𝑅3 + 12𝑅4)(−12𝑄 + 𝑄2)]]         (16) 

Substituting Equation (14) into Equation (16), yields the equation of the deflected surface of 

an all-round simply supported rectangular plate having shear effect. 

𝑤 = [
𝑃𝑏4

𝐷[
24

𝑟4(𝑄−2𝑄3+𝑄4)+
2

𝑟2(−12𝑅+12𝑅2)(−12𝑄+12𝑄2)+24(𝑅−2𝑅3+𝑅4)]
] [(𝑅 − 2𝑅3 + 𝑅4)(𝑄 − 2𝑄3 +

𝑄4) −
𝐷

𝑏2𝐶
[

1

𝑟2
(−12𝑅 + 12𝑅2)(𝑄 − 2𝑄3 + 𝑄4) + (𝑅 − 2𝑅3 + 12𝑅4)(−12𝑄 + 𝑄2)]]           

(17) 

Where at maximum deflection, 𝑅 = 𝑄 = 0.5 

Substituting the above values of R and Q into Equation (17), yields: 

𝑤𝑚𝑎𝑥 = [
𝑃𝑏4

𝐷(
7.5

𝑟4 +
18

𝑟2+7.5)
] [0.0977 −

𝐷

𝑏2𝐶
(−

0.9375

𝑟2 − 0.9375)]         (18) 

Only the first four series of the shape function of the deflected surface w(x,y) affects the 

maximum deflection utilizing orthogonal polynomial; thus, a numeric constant (1.4), indicating 

a 40% increase is employed for linearizing the effect of minor variations, thereby yielding the 

maximum deflection of plates as presented by the present study and shown in equation 19 

below; 

 

𝑤𝑚𝑎𝑥 = 1.4 ∗ [
𝑃𝑏4

𝐷(
7.5

𝑟4 +
18

𝑟2+7.5)
] [0.0977 −

𝐷

𝑏2𝐶
(−

0.9375

𝑟2 − 0.9375)]         (19) 
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RESULTS AND DISCUSSION 

Results 

The characteristic orthogonal polynomial function has been used to evaluate the maximum 

deflection in different types of plates using the following physical and geometric properties: b 

=4m, Aspect Ratio (r) = 1 – 2, at 0.1m interval, load (P) = 150KN, Young’s Modulus of 

Elasticity (E) = 205MPa, Poison’s Ratio (µ) = 0.3. Results obtained are therefore as shown 

below; 

  

Table 1: Result for the deflection of membrane plates  

 

 

 

 

 

 

 

 

 

 

Table 2: Result for the deflection of stiffened plates 

 

 

 

 

 

 

 

 

 

 

  Maximum Deflection (W) in m  

b Aspect Ratio, 

r 

Present 

Study 

Classical Method Diff (%) 

4 1 0.0679 0.0679 -0.040 

4 1.1 0.0815 0.0814 0.044 

4 1.2 0.0948 0.0946 0.244 

4 1.3 0.1078 0.1072 0.547 

4 1.4 0.1202 0.1191 0.899 

4 1.5 0.1319 0.1302 1.282 

4 1.6 0.1429 0.1405 1.680 

4 1.7 0.1531 0.1499 2.084 

4 1.8 0.1626 0.1586 2.472 

4 1.9 0.1714 0.1666 2.852 

4 2 0.1796 0.1733 3.508 

  Maximum Deflection (W) in m  

b Aspect Ratio, r Present Study Classical Method Diff (%) 

4 1 0.0025 0.0025 0.527 

4 1.1 0.0030 0.0030 0.556 

4 1.2 0.0035 0.0035 0.724 

4 1.3 0.0040 0.0040 0.994 

4 1.4 0.0045 0.0044 1.325 

4 1.5 0.0049 0.0048 1.690 

4 1.6 0.0053 0.0052 2.073 

4 1.7 0.0057 0.0056 2.459 

4 1.8 0.0060 0.0059 2.836 

4 1.9 0.0064 0.0062 3.202 

4 2 0.0067 0.0064 3.552 
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Table 3: Result for the deflection of moderately thick plates          

 

 

 

Table 4: Result for the deflection of thick plates 

 

 

 

 

 

 

  Maximum Deflection (W) in m  

 b Aspect Ratio, 

r 

Present Study Classical Method Diff (%) 

4 1 0.00013853 0.00013262 4.266 

4 1.1 0.00016562 0.00015902 3.985 

4 1.2 0.00019227 0.00018477 3.901 

4 1.3 0.00021806 0.00020938 3.981 

4 1.4 0.00024267 0.00023260 4.150 

4 1.5 0.00026593 0.00025426 4.388 

4 1.6 0.00028775 0.00027432 4.667 

4 1.7 0.00030808 0.00029280 4.960 

4 1.8 0.00032697 0.00030977 5.260 

4 1.9 0.00034446 0.00032530 5.562 

4 2 0.00036062 0.00033951 5.854 

  Maximum Deflection (W) in m  

b Aspect Ratio, 

r 

Present Study Classical Method Diff (%) 

4 1 0.00001665 0.00001382 17.011 

4 1.1 0.00001969 0.00001657 15.840 

4 1.2 0.00002266 0.00001926 15.038 

4 1.3 0.00002553 0.00002182 14.521 

4 1.4 0.00002826 0.00002424 14.213 

4 1.5 0.00003083 0.00002650 14.043 

4 1.6 0.00003323 0.00002859 13.977 

4 1.7 0.00003547 0.00003051 13.980 

4 1.8 0.00003755 0.00003228 14.034 

4 1.9 0.00003947 0.00003390 14.118 

4 2 0.00004125 0.00003538 14.225 



International Journal of Mechanical and Civil Engineering  

ISSN: 2689-940X 

Volume 5, Issue 1, 2022 (pp. 85-97) 

93 Article DOI: 10.52589/IJMCE-BOIHRQ2F 

  DOI URL: https://doi.org/10.52589/IJMCE-BOIHRQ2F 

www.abjournals.org 

 

Figure 1: Effect of aspect ratio on percentage difference between deflections of plates 

from present study and Kirchhoff’s hypothesis 

 

DISCUSSION OF RESULTS 

Maximum deflections for membrane, stiffened, moderately thick and thick plates were 

evaluated based on the above data and the result of the Present Study compared to that of the 

Classical Method (based on Kirchhoff’s hypothesis). A close observation of these numerical 

solutions as shown in Tables 1 and 2 indicates clearly the validation of the classical method for 

evaluating the maximum deflections of membrane as well as stiffened plates. This is as a result 

of the minimal difference in numerical findings between the present method and the classical 

methods, ranging between -0.04 – 3.552. The results further indicate a polynomial relationship 

to the fourth order between the aspect ratio and the maximum deflections for all plate 

categories. This implies that the maximum deflection of plates is a function of the sum of 

multiple orders of the aspect ratio. This relationship was found to be statistically sound 

regardless of plate thickness. The change in maximum deflection (as represented by the 

percentage differences in the maximum deflections between the Present Study and the Classical 

method), was observed to be a polynomial function of the aspect ratio. This change is however 

deemed to be due to the induced shear effect, resulting from the transverse loading. For 

membrane as well as stiffened plates, increase in aspect ratio was observed to be directly 

proportional to the change in maximum deflection. The slope of the proportionality was 

observed to reduce consistently with increasing thickness, such that the proportionality was 

near inverse for thick plates (see figure 1). This implies that transversely induced shear effect 

on plates relative to aspect ratio is primarily a function of plate’s thickness, which is highest at 

the least aspect ratio for thick plates, and lowest at the least aspect ratio for membrane and 

stiffened plates.  
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CONCLUSION AND RECOMMENDATION 

From findings of the study, the following conclusions and recommendations are drawn; 

1. The neglected shear effect of transverse loads on the maximum deflection of membrane 

and stiffened plates by the Classical method is considered structurally adequate as no 

significant contribution was observed from the present study. 

2. The application of the classical method for moderately thick and thick plates is not 

structurally ideal as the effect of shear as shown by the present study, yields significant 

contribution to maximum deflection. 

3. Plate thickness is a primary factor relative to the contribution of shear to the maximum 

deflection of plates. 

4. Change in maximum deflection due to induced shear effect is directly proportional to 

aspect ratio for membrane and stiffened plates but inversely proportional to aspect ratio 

(between 1 – 1.5) for thick plates.  

5. The present study therefore recommends the integration of the characteristic orthogonal 

polynomial function in the evaluation of maximum deflection of plates regardless of 

thickness.  
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APPENDICES 

Appendix A  

Effect of Aspect Ratio on the Deflection of Membrane and Stiffened Plates and the 

Percentage Difference Between the Deflections of Kirchhoff’s Hypothesis and the 

Present Study 

Appendix A1: Membrane plates  

 

 

Appendix A2: Stiffened plates  
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Appendix B 

Effect of Aspect Ratio on the Deflection of Moderately Thick and Thick Plates and the 

Percentage Difference Between the Deflections of Kirchhoff’s Hypothesis and the 

Present Study 

 

Appendices B1: Moderately Thick Plate 

 

 

 

Appendices B2: Thick Plate 
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