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ABSTRACT: In this paper, we extend a mathematical model on 

the impact of vaccination and treatment in controlling the spread 

of Hepatitis B Virus with infective migrants. Finally, we 

transform the model into proportions where we investigate and 

prove a theorem on the existence, uniqueness and positivity of the 

solution of the governing model in a positive invariant region. 

KEYWORDS: Hepatitis B Virus, migrant, vaccination, 

treatment, positivity, uniqueness and invariant region. 
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INTRODUCTION 

Hepatitis B is a disease that is characterized by inflammation of the liver and results from 

infection with the Hepatitis B Virus (HBV). This DNA virus was first identified in 1960s and 

belongs to the family of hepadnaviridae and genus orthohepatodnavirus [1]. It is the only 

hepadnavirus causing infection in humans [2] with double- shelled dane particles of diameter 

42-47 nanometers, which is present in serum of infected host.  Once infected with HBV, there 

is an incubation period of four to ten weeks and later acute symptoms like jaundice, appetite 

loss, fatigue, pale-coloured stool, nausea, vomiting, dark urine, abdominal pain begins to 

occur within the first six months after an individual is exposed to HBV. Chronic hepatitis B 

(CHB) is marked by persistent presence of HBsAg in serum for over six months, which will 

clear in most CHB patients through treatment. 

Currently, about 2 billion people worldwide have been infected and approximately 350 

million are chronically infected with HBV. The majority of those infected live in developing 

countries with few incidences in western countries. HBV is ranked among the highest cause 

of mortality worldwide and is responsible for 687000 deaths per year [5]. 

However, HBV can be transmitted by blood, birth or sex and exchange of blood and the 

spread can be enhanced through non-standard conditions and structure of migration process. 

Hence, in an effort to control the spread of HBV with infective migrants, a wide range of 

interventions are now available to prevent and treat HBV infection worldwide.  

Vaccination as a control measure is the administration of antigenic material to stimulate the 

immune system to develop protective antibodies (>10 million IU/ML or 10 IU/L) against the 

virus. The use of monovalent HB vaccine (engerix-B, recombinant HB regimen) or 

combination vaccine (twinrix, convex, pediarix) for immunization of children and adults at 

risk, is administered with Hepatitis B Immune Globulin (HBIG) in other to produce immunity 

against HBV (USFDA, 2011). Current dosing recommendations are 0.13ml/kg HBIG 

immediately after delivery or within 12 hours after birth, followed by a second dose at 1-2 

months and a third dose not earlier than 6 months (24 weeks) in combination with 

recombinant vaccine (Ma et al., 2014; CDC, 2013). The combination results in a higher-than-

90% level of protection against HBV infection (Ikobah et al., 2016). Despite some successes 

associated with the use of vaccines and supportive therapies for acute infection, the 

devastating effect of HBV has increased, thus, the need for treatment of chronic carriers. 

Treatment as a control strategy helps to reduce viral loads to undetectable (≤ 20IU/ml) or 

nearly undetectable levels (< 69 IU/ml or 400 Copies/ml) in most treated persons, depending 

on medication and genotype (Lai and Yuen, 2007). Treatment decisions are made on the basis 

of Hepatitis B Virus Deoxyribonucleic Acid (HBVDNA) viral load, Hepatitis B envelope 

antigen (HBeAg) status, Alanine aminotransferase (ALT), moderate to severe active 

necroinflammation and/or at least moderate liver fibrosis severity (EASL, 2012; Lampertico 

and Liaw, 2012; Scaglione and Lok, 2012; Buti, 2014; Kao, 2014), the age of patient, stage of 

liver disease and other factors (Weinbaum et al., 2008).  The research carried out by Asian 

liver center at Stanford University in 2018, recommend treatment to be administered when 

ALT concentrations are greater than 2 times the upper limit of normal (> 30 IU/l for men and 

19 IU/l for women) and HBeAg negative(HBVDNA >2,000IU/ml) or HBeAg positive 

(HBVDNA >20,000IU/ml) for 3-6 months. 
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Currently, the  first line drugs approved globally include  immune stimulators (interferon 

Alfa-2b and pegylated interferon-2a) and oral antiviral such as entecavir (ETV) and tenofovir 

disoproxil fumarate (TDF) (Weinbaum et al., 2008). Although, combination therapy, such as 

TDF in combination with ETV or emtricitabine (FTC), Encapsidation and entry inhibitors, 

TLR7 agonists, and therapeutic vaccines can be considered if drug-resistant mutants are 

present or for patients with failing first line therapy (Zhang et al., 2012, Kosinska et al., 

2013). Therefore, adherence to anti-HBV therapies has > 95% effectiveness for maintaining 

maximal suppression (Zoulim and Locarnini, 2009; Gish, 2012; Viagono et al., 2014). 

However, small tumors detected early can be cured through resection or ethanol injection. 

Moreover, with advances in surgical technique, immunosuppression and intensive care, liver 

transplants have become an effective treatment option for liver failure and hepatocellular 

carcinoma (HCC), with 5-year survival above 75% (Jaclyn, 2010). Once you recover from 

Hepatitis B, you develop antibodies that protect you from the virus for life (CDC, 2008). 

In order to improve understanding on the dynamics of HBV infection, several mathematical 

models have been formulated (Zou et al., 2009; Pang et al., 2010; Kimbir et al., 2014; Khan 

et al., 2016). This study is motivated by the work of Khan et al. (2016) which is centered on 

the transmission model of Hepatitis B virus with the migration effect. They assumed a 

situation where the total population was compartmentalized into six classes, namely: the 

susceptible S, Exposed E, Acutely infected A, Chronic carrier C, Immunity class V and 

Migrated M individuals. They also considered 𝛾3 , as the rate at which chronic carriers acquire 

immunity and move to the immunized class. They assumed that a proportion of susceptible 

individuals are vaccinated across all age groups. Their result suggests that migrants for short 

visit and students should be subjected to test to reduce the number of migrants with disease. 

The research further recommends a more advanced model on restraining HBV transmission 

through migration. 

Against this background, the present study intends to extend the work of Khan et al. (2016) 

by incorporating treatment, which was not considered in their model, but is proved effective 

in eliminating hepatitis B virus (Kimbir et al., 2014;  Nayagam et al., 2016). Therefore, we 

intend to show that, if this health control measures adopted in countries like China when 

applied here, would help to improve the health condition in Nigeria. Hence, this study will 

model the effect of vaccination and treatment on HBV transmission with infective migrants. 

To improve better understanding on the dynamics of HBV infection, several mathematical 

models have been formulated; see for example [15, 16,17 and 18] . This study is motivated 

by the work of [18], on the transmission model of hepatitis B virus with the migration effect. 

Their result suggests that migrants for short visit and students should be subjected to test to 

reduce the number of migrants with disease. The research further recommends a more 

advanced model on restraining HBV transmission through migration. Therefore, guided by 

the work of [18] as mentioned above, the present study intends to modify their work by 

incorporating treatment of chronic carriers. Hence, this study intends to investigate the region 

of biological interest, existence, uniqueness and positivity of solution of the effect of 

vaccination and treatment on Hepatitis B Virus transmission with infective migrants.   
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MODEL FORMULATION 

The Existing model 

We consider the following assumptions of the existing model in [18] below. 

i. The population is compartmentalized into six groups namely: Susceptible individuals, 

S(t), Exposed individuals  E(t), Acutely infected individuals, A(t), Chronic carriers, 

C(t), Immunized individuals,  V(t), and Migrated individuals, M(t), all at time t. 

ii. The population is mixed homogeneously, that is, all people are equally likely to be 

infected by the infectious individuals in case of contact. 

iii. The newborns to carrier mothers infected at birth are latently infected individual. 

iv. A proportion of susceptible is vaccinated per unit time and the vaccinated individuals 

do not acquire permanent immunity. 

v. By vaccination coverage we assumed the complete three dose of HBV vaccine. 

vi. Migrants are adults hence; the natural birth rate of the migrated class is neglected. 

vii. There is a transmission rate from exposed to migrated class and vice–versa. 

viii. There is a transmission rate from migrated class to susceptible class and migrated 

class to acutely infected class. 

ix. There is a stable population with equal precipitant birth and death rate (as disease- 

induced death rate is not considered in the system).  

Table 1:   Parameters of the Existing Model 

The existing model in [18] has the following parameters: 

Parameters Description 

𝑆(𝑡) Number of Susceptible individuals at time 𝑡 

𝐸(𝑡) Number of Exposed individuals at time 𝑡 

𝐴(𝑡) Number of Acute infective at time 𝑡 

𝐶(𝑡) Number of Chronic carriers at time 𝑡 

𝑉(𝑡) Number of Immunized individuals at time 𝑡 

𝑀(𝑡) Number of Migrated individuals at time 𝑡 

𝛿 Equal per capita birth and death rate (as disease-induced death rate is 

not considered in the system)  

𝜋 The Proportion without  immunization   

𝛾1 Rate at which exposed individuals become infectious and move to 

the Acute infected class 

𝛾2 Rate at which acutely infected  individuals  move to the chronic 

carrier  class 

𝛾3 Rate at which chronic carriers acquire immunity and move to the 

immunized class  

𝛽 The transmission coefficient  

𝜅 The infectiousness of carriers relative to acute infections 

𝑞 Proportion of acute infected individuals that become carriers 

1 − 𝑞 Proportion of acute infected individuals that move to the immunity 

class. 

𝛿0 The loss of immunity from the immunized  class to susceptible class 


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𝜌 Proportion of vaccinated susceptible per unit time 

𝜉 The rate of flow from exposed to migrated class. 

𝛼 The flow from migrated to susceptible class. 

𝜇1 The transmission rate from migrated class to exposed class. 

𝜇2 The transmission rate from migrated class to acute infected class 

𝜂 Proportion of the unimmunized children born to carrier mothers 

𝛿(1 − 𝜋) The newborns that are successfully immunized 

𝛿𝜋(1 − 𝜂𝐶(𝑡)) Births flux into the susceptible class 

 

 

 

Figure 1: Flow Diagram of HBV transmission Dynamics for the Existing Model 

With the above assumptions, parameters and flow diagram in [18], the following model 

equations were derived. 
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𝑑𝑆

𝑑𝑡
= 𝛿𝜋(1 − 𝜂𝐶) − 𝛿𝑆 − 𝛽(𝐴 + 𝐾𝐶)𝑆 + 𝛿0𝑉 − 𝑝𝑆 + 𝛼𝑀                                              

𝑑𝐸

𝑑𝑡
= 𝛽(𝐴 + 𝐾𝐶)𝑆 − 𝛿𝐸 + 𝛿𝜋𝜂𝐶 − 𝛾1𝐸 + 𝜇1𝑀 − 𝜉𝐸                                                       

𝑑𝐴

𝑑𝑡
= 𝛾1𝐸 − (𝛿 + 𝛾2)𝐴 + 𝜇2𝑀                                                                                                 (2.1)

𝑑𝐶

𝑑𝑡
= 𝑞𝛾2𝐴 − 𝛿𝐶 − 𝛾3𝐶                                                                                                             

𝑑𝑉

𝑑𝑡
= 𝛾3𝐶 + (1 − 𝑞)𝛾2𝐴 − 𝛿0𝑉 − 𝛿𝑉 + 𝛿(1 − 𝜋) + 𝑝𝑆                                                   

𝑑𝑀

𝑑𝑡
= 𝜉𝐸 − (𝜇1 + 𝜇2)𝑀 − 𝛿𝑀 − 𝛼𝑀                                                                                    

 

 

 

The Modified Model 

In addition to the assumptions of the existing model, we make the following assumptions. 

We assume that the chronic carriers do not acquire immunity accept they are treated (O’Leary 

et al., 2008) and recruited into the treated class. Whereas, not all treated individuals recovers 

and progress to the recovery class, some relapse to chronic if drug resistant mutants are 

present (Zhang et al., 2012, Kosinska et al., 2013). In addition, we change the notation of the 

immune class to vaccinated class and redefined the parameters of the extended model in table 

2.  

 

 

 

 

 

 

 

Figure 2: Flow diagram of HBV transmission dynamics for the modified model 
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The modified model equations are derived based on the above assumptions, parameters and 

flow diagram in figure 2. 

𝑑𝑆

𝑑𝑡
= 𝛿𝜋(1 − 𝜂𝐶) − 𝛿𝑆 − 𝛽(𝐴 + 𝑘𝐶) − 𝑝𝑆 + 𝛿0𝑉 + 𝛼𝑀                                             

𝑑𝐸

𝑑𝑡
= 𝛽(𝐴 + 𝑘𝐶)𝑆 − (𝛿 + 𝜉 + 𝛾1)𝐸 + 𝛿𝜋𝜂𝐶 + 𝜇1𝑀                                                       

𝑑𝐴

𝑑𝑡
= 𝛾1𝐸 − (𝛿 + 𝛾2)𝐴 + 𝜇2𝑀                                                                                                

𝑑𝐶

𝑑𝑡
= 𝑞𝛾2𝐴 +  𝜑𝑇 − (𝛿 + 𝛼0)𝐶                                                                                            (2.2)

𝑑𝑇

𝑑𝑡
= 𝛼0𝐶 − (𝛿 + 𝜑 + 𝛾3)𝑇                                                                                                  

𝑑𝑅

𝑑𝑡
= (1 − 𝑞)𝛾2𝐴 + 𝛾3𝑇 − 𝛿𝑅                                                                                             

𝑑𝑀

𝑑𝑡
= 𝜉𝐸 − (𝜇1 + 𝜇2 + 𝛿 + 𝛼)𝑀                                                                                        

𝑑𝑉

𝑑𝑡
= 𝛿(1 − 𝜋) + 𝑝𝑆 − (𝛿 + 𝛿0)𝑉,                                                                                     

 

𝑆(0) > 0, 𝐸(0) ≥ 0, 𝐴(0) ≥ 0, 𝐶(0) ≥ 0, 𝑇(0) ≥ 0, 𝑅(0) ≥ 0, 𝑀(0) ≥ 0, 𝑉(0) ≥ 0 

 The total population 𝑁(𝑡), is defined by  

𝑁(𝑡) = 𝑆(𝑡) + 𝐸(𝑡) + 𝐴(𝑡) + 𝐶(𝑡) + 𝑇(𝑡) + 𝑅(𝑡) + 𝑀(𝑡) + 𝑉(𝑡), So that 

𝑑𝑁

𝑑𝑡
= 𝛿 − 𝛿𝑁. 

Therefore, 

𝑑𝑁

𝑑𝑡
= 𝛿(1 − 𝑁).                                                                                                                      (3.15) 

Using variable separable method, we have  

 
𝑑𝑁

(1 − 𝑁)
= 𝛿𝑑𝑡                                                                                                                                     

Integrating both side yield 

∫
𝑑𝑁

  (1−𝑁)
= ∫ 𝛿𝑑𝑡

 

−𝐼𝑛(1 − 𝑁) = 𝛿𝑡 + 𝐶                                                                                                                        

Multiplying through by -1 
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𝐼𝑛(1 − 𝑁) = −𝛿𝑡 − 𝐶                                                                                                                         

Taking exponential of both side                           

1 − 𝑁 = 𝐴𝑒−𝛿𝑡, where 𝐴 = 𝑒−𝑐 

𝑁(𝑡) = 1 − 𝐴𝑒−𝛿𝑡,                                                                                                                               

At time 𝑡 = 0, we have   

𝑁(0) = 𝑁0 = 1 − 𝐴                                                                                                                             

𝐴 = 1 − 𝑁0                                                                                                                                                                                                     

𝑁(𝑡) = 1 − (1 − 𝑁0)𝑒−𝛿𝑡,                                                                                                                

 𝑁(𝑡) → 1  as t → ∞,   it means that 

Since 𝑆 + 𝐸 + 𝐴 + 𝐶 + 𝑇 + 𝑅 + 𝑀 + 𝑉 = 1 , we have  

𝑅 = 1 − 𝑆 − 𝐸 − 𝐴 − 𝐶 − 𝑇 − 𝑀 − 𝑉                                                                               (3.16)  

 Hence, the governing equations become 
𝑑𝑆

𝑑𝑡
= 𝛿𝜋(1 − 𝜂𝐶) − 𝛿𝑆 − 𝛽(𝐴 + 𝑘𝐶)𝑆 + 𝛿0𝑉 − 𝑝𝑆 + 𝛼𝑀,                                          (3.17)

𝑑𝐸

𝑑𝑡
= 𝛽(𝐴 + 𝑘𝐶)𝑆 − 𝛿𝐸 + 𝛿𝜋𝜂𝐶 − 𝛾1𝐸 − 𝜉𝐸 + 𝜇1𝑀,                                                   (3.18)

𝑑𝐴

𝑑𝑡
= 𝛾1𝐸 − (𝛿 + 𝛾2)𝐴 + 𝜇2𝑀,                                                                                            (3.19)

𝑑𝐶

𝑑𝑡
= 𝑞𝛾2𝐴 + 𝜑𝑇 − (𝛿 + 𝛼0)𝐶 ,                                                                                           (3.20)

𝑑𝑇

𝑑𝑡
= 𝛼0𝐶 − (𝛿 + 𝜑 + 𝛾3)𝑇                                                                                                   (3.21)

𝑑𝑀

𝑑𝑡
= 𝜉𝐸 − (𝜇1 + 𝜇2 + 𝛿 + 𝛼)𝑀.                                                                                         (3.22)

𝑑𝑉

𝑑𝑡
= 𝛿(1 − 𝜋) + 𝑝𝑆 − (𝛿 + 𝛿0)𝑉,                                                                                        (3.23)
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The initial conditions for the modified model are non-negative. 𝑆(0) ≥ 0, 𝐸(0) ≥ 0, 𝐴(0) ≥
0, 𝐶(0) ≥ 0, 𝑇(0) ≥ 0, 𝑀(0) ≥ 0, 𝑉(0) ≥ 0, and all the parameters of the extended model 

are also assumed to be non-negative. 

 

BASIC PROPERTIES OF SOLUTION OF THE GOVERNING MODEL 

Invariant region  

Since, the model system (3.17) − (3.23) under consideration monitors a human population; 

we assume that all state variables and parameters of the model are positive for all 𝑡 ≥ 0. For 

any standard analysis to be conducted on the model (3.17) − (3.23) it is imperative to show 

that the state variables of the model remains positive for all positive initial conditions, 

( 𝑆(0) ≥ 0, 𝐸(0) ≥ 0, 𝐴(0) ≥ 0, 𝐶(0) ≥ 0, 𝑇(0) ≥ 0, 𝑀(0) ≥ 0, 𝑉(0) ≥ 0, ). Therefore, we 

state the proposition below: 

Proposition 1 

The model system (3.17) − (3.23) has solutions which are contained in the region   Ω =
{(𝑆, 𝐸, 𝐴, 𝐶, 𝑇, 𝑀, 𝑉): 𝑁(𝑡) ≤ 1}𝜖𝑅+

7  

Proof: 

Let 𝑁(𝑡) = 𝑆(𝑡) + 𝐸(𝑡) + 𝐴(𝑡) + 𝐶(𝑡) + 𝑇(𝑡) + 𝑀(𝑡) + 𝑉(𝑡), then we have 

𝑑𝑁

𝑑𝑡
=

𝑑𝑆

𝑑𝑡
+

𝑑𝐸

𝑑𝑡
+

𝑑𝐴

𝑑𝑡
+

𝑑𝐶

𝑑𝑡
+

𝑑𝑇

𝑑𝑡
+

𝑑𝑀

𝑑𝑡
+

𝑑𝑉

𝑑𝑡
, 

that is 

 
𝑑𝑁

𝑑𝑡
= 𝛿 − 𝛿(𝑆 + 𝐸 + 𝐴 + 𝐶 + 𝑇 + 𝑀 + 𝑉) + 𝑞𝛾2𝐴 − 𝛾3𝑇                                                

𝑑𝑁

𝑑𝑡
= 𝛿 − 𝛿𝑁 + 𝑞𝛾2𝐴 − 𝛾3𝑇 .                                                                                            (3.24) 

In disease-free population, 𝑆 ≤ 𝑁 at the initial point, therefore equation (3.24) takes the form 

𝑑𝑁

𝑑𝑡
≤ 𝛿 − 𝛿𝑁, 

𝑑𝑁

𝑑𝑡
+ 𝛿𝑁 ≤ 𝛿. 

Using the method of integrating factor, we obtain the solution as follows: 

𝑁(𝑡) ≤
𝛿

𝛿
+ 𝐶𝑒−𝛿𝑡,    𝑎𝑠     𝑡 → ∞ .                                                                                    (3.25) 

where 𝐶 is a constant of integration. 
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Applying the initial condition at 𝑡 = 0 we have, 

  𝑁0 − 1 ≤ 𝐶                                        

Thus equation(3.25), becomes 

𝑁(𝑡) ≤ 1 + (𝑁0 − 1)𝑒−𝛿𝑡 

𝑁(𝑡) → 1, 𝑎𝑠 𝑡 → ∞                                                                                

By using the theorem of differential inequality (Birkhoff and Rota, 1989), we have 0 ≤
𝑁(𝑡) ≤ 1 𝑎𝑠 𝑡 → ∞.                                                                                                       (3.26) 

To be precise, 𝑁(𝑡) ≤ 1  if 𝑁0 ≤ 1.  Therefore, Ω is positively invariant. 

Also, if 𝑁(𝑡) ≥ 1, then 
𝑑𝑁

𝑑𝑡
< 0 and the feasible solution either approaches 

1or enter Ω in finite time. Hence Ω is attracting and all the feasible solution of the model with 

initial condition in 𝑅+
7  enters or stays in the region Ω. Hence, the system is biologically 

meaningful and epidemiological well posed in the region Ω (Hethcote, 2000). 

 

Positivity of the solution 

For the model (3.17) − (3.23) to be mathematically well posed, we need to prove that all the 

state variables are non-negative for all 𝑡 ≥ 0. 

Proposition 2  

Given non-negative initial data {𝑆(0), 𝐸(0), 𝐴(0), 𝐶(0), 𝑇(0), 𝑀(0), 𝑉(0)}с Ω,  the feasible 

solution {𝑆, 𝐸, 𝐴, 𝐶, 𝑇, 𝑀, 𝑉} of the model system (3.17) − (3.23) is positive for all 𝑡 ≥ 0. 

 

Proof 

To prove Proposition 2, we will use the approach as outlined in the work of Sharomi et al. 

(2008) by considering all the equations of the model. 

Beginning with (3.17), we have  

𝑑𝑆

𝑑𝑡
= 𝛿𝜋(1 − 𝜂𝐶) − 𝛿𝑆 − 𝛽(𝐴 + 𝑘𝐶)𝑆 + 𝛿0𝑉 − 𝑝𝑆 + 𝛼𝑀                                                       

or 

𝑑𝑆

𝑑𝑡
≥ −(𝛿 + 𝛽𝐴 + 𝛽𝐾𝐶 + 𝑃)𝑆.                                                                                           (3.27) 

Integrating (3.27) by separation of variables and applying the initial condition yields 
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𝑆(𝑡) ≥ 𝑆(0)𝑒−(𝛿+𝛽𝐴+𝛽𝐾𝐶+𝑃)𝑡 > 0  for t > 0.                                                                   (3.28) 

From equation (3.18), we have 

𝑑𝐸

𝑑𝑡
= 𝛽(𝐴 + 𝐾𝐶)𝑆 − 𝛿𝐸 + 𝛿𝜋𝜂𝐶 − 𝛾1𝐸 − 𝜉𝐸 + 𝜇1𝑀, 

𝑑𝐸

𝑑𝑡
≥ −(𝛿 + 𝛾1 + 𝜉)𝐸.                                                                                                          (3.29) 

Integrating (3.29) by separation of variables and applying the initial condition consequently 

yields 

𝐸(𝑡) ≥ 𝐸(0)𝑒−(𝛿+𝛾1+𝜉)𝑡 > 0       for     𝑡 > 0 .                                                                  (3.30) 

From equation (3.19), we have  

𝑑𝐴

𝑑𝑡
= 𝛾1𝐸 − 𝛿𝐴 − 𝛾2𝐴 + 𝜇2𝑀                                                                                                           

         ≥ −(𝛿 + 𝛾2)𝐴                                                                                                                  (3.31)
 

Integrating (3.31) and applying the initial condition we have 

𝐴(𝑡) ≥ 𝐴(0)𝑒−(𝛿+𝛾2)𝑡      for  𝑡 > 0.                                                                                    (3.32) 

From equation (3.20), we get 

𝑑𝐶

𝑑𝑡
= 𝑞𝛾2𝐴 + 𝜑𝑇 − (𝛿 + 𝛼0)𝐶 

or 

𝑑𝐶

𝑑𝑡
≥ −(𝛿 + 𝛼0)𝐶.                                                                                                                  (3.33) 

Integrating  (3.33) yields 

𝐶(𝑡) ≥ 𝐶(0)𝑒−(𝛿+𝛼0)𝑡 > 0        for 𝑡 > 0.                                                                         (3.34)  

From equation (3.18𝐵), we get 

𝑑𝑇

𝑑𝑡
= 𝛼0𝐶 − (𝛿 + 𝜑 + 𝛾3)𝑇  

    ≥ (𝛿 + 𝜑 + 𝛾3)𝑇                                                                                                               (3.35)  

Integrating (3.35) and applying the initial condition we have 

𝑇(𝑡) ≥ 𝑇(0)𝑒−(𝛿+𝜑+𝛾3)𝑡      for  𝑡 > 0.                                                                            (3.36)  

from equation (3.22), we have 
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𝑑𝑀

𝑑𝑡
= 𝜉𝐸 − (𝜇1 + 𝜇2 + 𝛿 + 𝛼)𝑀 

or 

𝑑𝑀

𝑑𝑡
≥ −(𝜇1 + 𝜇2 + 𝛿 + 𝛼)𝑀                                                                                               (3.37) 

Integrating (3.37) and applying the initial condition yields 

𝑀(𝑡) ≥ 𝑀(0)𝑒−(𝜇1+𝜇2+𝛿+𝛼)𝑡      for  𝑡 > 0.                                                                      (3.38) 

Lastly, from equation (3.23), we have 

𝑑𝑉

𝑑𝑡
= 𝛿(1 − 𝜋) + 𝑝𝑆 − (𝛿 + 𝛿0)𝑉                                                                                                  

         ≥ −(𝛿 + 𝛿0)𝑉                                                                                                                 (3.39) 

Integrating (3.39) and applying the initial condition we have 

𝑉(𝑡) ≥ 𝑉(0)𝑒−(𝛿+𝛿0)𝑡      for  𝑡 > 0.                                                                                   (3.40) 

Therefore, from (3.28), (3.30), (3.32), (3.34),(3.36), (3.38) and (3.40), the solution set of 

the model (3.17) − (3.23) is positive for all 𝑡 > 0 which ends the proof. 

Existence and uniqueness of the solution 

The ideas and techniques adopted in this section are motivated from the work of Derick et 

al.(1976). Using their approach, we formulate theorem on existence of unique solution of the 

model system (3.17) − (3.23) and we establish the proof. 

We may write the model system (3.17) − (3.23) in compact form as 

𝑥′ = 𝑓(𝑡, 𝑥), 𝑥(𝑡0) = 𝑥0                                                                                                       (3.41) 

Where, 

 𝑥 = (𝑆, 𝐸, 𝐴, 𝐶, 𝑇, 𝑀, 𝑉)                                                                                                                      

and 

𝑓(𝑡, 𝑥) =
𝑑𝑥

𝑑𝑡
  

𝑓1 =
𝑑𝑥1

𝑑𝑡
=

𝑑𝑠

𝑑𝑡
  

and so on to 𝑓7.  

Theorem 1 

Let Ω denoted the region  
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 |𝑡 − 𝑡0| ≤ 𝛼, ‖𝑥 − 𝑥0‖ ≤ 𝑏, 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛), 𝑥0 = (𝑥10, 𝑥20, … , 𝑥𝑛0)               (3.42) 

and suppose that 𝑓(𝑡, 𝑥) satisfies the Lipschitz condition 

‖𝑓(𝑡, 𝑥) − 𝑓(𝑡, 𝑦)‖ ≤ 𝐾‖𝑥 − 𝑦‖                                                                                       (3.43) 

Where the pairs (𝑡, 𝑥) and (𝑡, 𝑦) belong to Ω, where K is a positive constant. Then, there is a 

constant 𝛿 > 0 such that there exist a unique continuous vector solution 𝑥(𝑡) of the system 

(3.42) in the interval |𝑡 − 𝑡0| ≤ 𝛿. 

The condition (3.43) from the above theorem can be alternatively proven using the following 

result: 

Proposition 3 

The Lipschitz condition (3.43) is satisfied if the partial derivatives ( 
𝜕𝑓𝑖

𝜕𝑥𝑗
) , 𝑖, 𝑗 = 1,2, … ,7 are 

continuous and bounded in Ω. Thus, we shall state and prove the following result. 

Theorem 2 

Let Ω = {x(t): | 𝑎 ≤ 𝑡 ≤ 𝑏,   |𝑥| < ∞|}. Then model equation (3.17) − (3.23) has a unique 

solution provided 𝑓(𝑡, 𝑥) is continuous and satisfies Lipschitz condition in  Ω.  

Proof 

We show that 
𝜕𝑓𝑖

𝜕𝑥𝑗
, 𝑖, 𝑗 = 1,2,3,4,5,6,7 are continuous and bounded in Ω.  

𝑓1 = 𝛿𝜋(1 − 𝜂𝐶) − 𝛿𝑆 − 𝛽(𝐴 + 𝑘𝐶)𝑆 + 𝛿0𝑉 − 𝑝𝑆 + 𝛼𝑀,                                              (3.44)

𝑓2 = 𝛽(𝐴 + 𝑘𝐶)𝑆 − 𝛿𝐸 + 𝛿𝜋𝜂𝐶 − 𝛾1𝐸 − 𝜉𝐸 + 𝜇1𝑀,                                                        (3.45)

𝑓3 = 𝛾1𝐸 − (𝛿 + 𝛾2)𝐴 + 𝜇2𝑀,                                                                                                 (3.46)

𝑓4 = 𝑞𝛾2𝐴 + 𝜑𝑇 − (𝛿 + 𝛼0)𝐶 ,                                                                                                (3.47)

𝑓5 = 𝛼0𝐶 − (𝛿 + 𝜑 + 𝛾3)𝑇                                                                                                       (3.48)

𝑓6 = 𝜉𝐸 − (𝜇1 + 𝜇2 + 𝛿 + 𝛼)𝑀.                                                                                             (3.49)

𝑓7 = 𝛿(1 − 𝜋) + 𝑝𝑆 − (𝛿 + 𝛿0)𝑉,                                                                                          (3.50)

 

Differentiating each of  𝑓1, 𝑓2, 𝑓3, 𝑓4,𝑓5, 𝑓6 and  𝑓7  partially with respect to 

𝑆, 𝐸, 𝐴, 𝐶, 𝑇,𝑀𝑎𝑛𝑑 𝑉 

respectively and taking their norms gives 



 

International Journal of Public Health and Pharmacology  

Volume 4, Issue 1, 2024 (pp. 58-73)   

71  Article DOI: 10.52589/IJPHP-ILXYTCAC  

  DOI URL: https://doi.org/10.52589/IJPHP-ILXYTCAC 

www.abjournals.org 

|
𝜕𝑓1

𝜕𝑆
| = |(𝛿 + 𝛽(𝐴 + 𝑘𝐶) + 𝑃)| < ∞, |

𝜕𝑓1

𝜕𝐸
| = |0| < ∞, |

𝜕𝑓1

𝜕𝐴
| = |(𝛽𝑆)| < ∞,

|
𝜕𝑓1

𝜕𝐶
| = |−(𝛿𝜋𝜂)| < ∞, |

𝜕𝑓1

𝜕𝑇
| = |0| < ∞, |

𝜕𝑓1

𝜕𝑀
| = |(𝛼)| < ∞, |

𝜕𝑓1

𝜕𝑉
| = |(𝛿0)| < ∞

|
𝜕𝑓2

𝜕𝑆
| = |𝛽(𝐴 + 𝑘𝐶)| < ∞, |

𝜕𝑓2

𝜕𝐸
| = |−(𝛿 + 𝛾1 + 𝜉)| < ∞, |

𝜕𝑓2

𝜕𝐴
| = |𝛽𝑆| < ∞,

|
𝜕𝑓2

𝜕𝐶
| = |𝛽𝑘𝑆 + 𝛿𝜋𝜂| < ∞, |

𝜕𝑓2

𝜕𝑇
| = |0| < ∞, |

𝜕𝑓2

𝜕𝑀
| = |𝜇1| < ∞, |

𝜕𝑓2

𝜕𝑉
| = |0| < ∞,

|
𝜕𝑓3

𝜕𝑆
| = |0| < ∞, |

𝜕𝑓3

𝜕𝐸
| = |𝛾1| < ∞, |

𝜕𝑓3

𝜕𝐴
| = |−(𝛿 + 𝛾2)| < ∞, |

𝜕𝑓3

𝜕𝐶
| = |0| < ∞,

|
𝜕𝑓3

𝜕𝑇
| = |0| < ∞, |

𝜕𝑓3

𝜕𝑀
| = |𝜇1| < ∞, |

𝜕𝑓3

𝜕𝑉
| = |0| < ∞,

|
𝜕𝑓4

𝜕𝑆
| = |0| < ∞, |

𝜕𝑓4

𝜕𝐸
| = |0| < ∞, |

𝜕𝑓4

𝜕𝐴
| = |𝑞𝛾2| < ∞, |

𝜕𝑓4

𝜕𝐶
| = |(𝛿 + 𝛼0)| < ∞  

|
𝜕𝑓4

𝜕𝑇
| = |𝜑| < ∞, |

𝜕𝑓4

𝜕𝑀
| = |0| < ∞, |

𝜕𝑓4

𝜕𝑉
| = |0| < ∞

|
𝜕𝑓5

𝜕𝑆
| = |0| < ∞, |

𝜕𝑓5

𝜕𝐸
| = |0| < ∞, |

𝜕𝑓5

𝜕𝐴
| = |0| < ∞, |

𝜕𝑓5

𝜕𝐶
| = |𝛼0| < ∞,

|
𝜕𝑓5

𝜕𝑇
| = |−(𝛿 + 𝜑 + 𝛾3)| < ∞, |

𝜕𝑓5

𝜕𝑀
| = |0| < ∞, |

𝜕𝑓5

𝜕𝑉
| = |0| < ∞,

|
𝜕𝑓6

𝜕𝑆
| = |0| < ∞, |

𝜕𝑓6

𝜕𝐸
| = |𝜉| < ∞, |

𝜕𝑓6

𝜕𝐴
| = |0| < ∞, |

𝜕𝑓6

𝜕𝐶
| = |0| < ∞,

|
𝜕𝑓6

𝜕𝑇
| = |0| < ∞, |

𝜕𝑓6

𝜕𝑀
| = |(𝜇1 + 𝜇2 + 𝛿 + 𝛼)| < ∞, |

𝜕𝑓6

𝜕𝑉
| = |0| < ∞,

|
𝜕𝑓7

𝜕𝑆
| = |𝜌| < ∞, |

𝜕𝑓7

𝜕𝐸
| = |0| < ∞, |

𝜕𝑓7

𝜕𝐴
| = |0| < ∞, |

𝜕𝑓7

𝜕𝐶
| = |0| < ∞,

|
𝜕𝑓7

𝜕𝑇
| = |0| < ∞, |

𝜕𝑓7

𝜕𝑀
| = |0| < ∞, |

𝜕𝑓7

𝜕𝑉
| = |−(𝛿 + 𝛿0)| < ∞,

 

                                 

Hence, the partial derivatives exist and are continuous and bounded. 

Therefore, the model (3.17) − (3.23) has a unique solution. 

 

CONCLUDING REMARKS  

In this paper, we extend the work of [18] by incorporating treatment class and its relapse 

effect.  The model is then transformed into proportions to reduce the number of equations, in 

order to define the prevalence of infection, where the model is biologically and 

mathematically well posed. The proofs for the invariant region, existence, uniqueness and 

positivity of solutions are adequately established.   
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